Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 294(1): G58-67, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17947449

ABSTRACT

Progressive familial cholestasis (PFIC) 2 and benign recurrent intrahepatic cholestasis (BRIC) 2 are caused by mutations in the bile salt export pump (BSEP, ABCB11) gene; however, their prognosis differs. PFIC2 progresses to cirrhosis and requires liver transplantation, whereas BRIC2 is clinically benign. To identify the molecular mechanism(s) responsible for the phenotypic differences, eight PFIC2 and two BRIC2 mutations were introduced in rat Bsep, which was transfected in MDCK II cells. Taurocholate transport activity, protein expression, and subcellular distribution of these mutant proteins were studied in a polarized MDCK II monolayer. The taurocholate transport activity was approximately half of the wild-type (WT) in BRIC2 mutants (A570T and R1050C), was substantially less in two PFIC2 mutants (D482G and E297G), and was almost abolished in six other PFIC2 mutants (K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X). Bsep protein expression levels correlated closely with transport activity, except for R1057X. The half-life of the D482G mutant was shorter than that of the WT (1.35 h vs. 3.49 h in the mature form). BRIC2 mutants and three PFIC mutants (D482G, E297G, and R1057X) were predominantly distributed in the apical membrane. The other PFIC2 mutants remained intracellular. The R1057X mutant protein was stably expressed and trafficked to the apical membrane, suggesting that the COOH-terminal tail is required for transport activity but not for correct targeting. In conclusion, taurocholate transport function was impaired in proportion to rapid degradation of Bsep protein in the mutants, which were aligned in the following order: A570T and R1050C > D482G > E297G > K461E, G982R, R1153C, R1268Q, 3767-3768insC, and R1057X. These results may explain the phenotypic difference between BRIC2 and PFIC2.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cholestasis, Intrahepatic/metabolism , Cholestasis/metabolism , Mutation , Taurocholic Acid/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Amino Acid Sequence , Animals , Cell Line , Cholestasis/genetics , Cholestasis, Intrahepatic/genetics , Dogs , Genotype , Half-Life , Models, Molecular , Molecular Sequence Data , Phenotype , Protein Conformation , Protein Transport , RNA, Messenger/metabolism , Rats , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...