Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(21): 12974-12983, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35582872

ABSTRACT

In recent times, nanoscience is devoting growing interest to the easy assembly of well-established nanomaterials into hybrid nanostructures displaying new emerging features. Here, we study the photophysicochemical response of binary nanohybrids obtained by the spontaneous coupling of luminescent carbon dots to silver nanoparticles with controlled surface charge. Evidence of the successful coupling is obtained by steady-state and time resolved optical measurements and further confirmed by direct imaging. We demonstrate strong interactions within nanohybrids, which can be modelled in terms of a sub-picosecond electron transfer from photoexcited carbon dots to silver nanoparticles. Accordingly, newly designed nanohybrids display significant photocatalytic performance demonstrated by the photodegradation of methylene blue under ultraviolet-visible light. Our results provide an exhaustive picture of the optical response of these self-assembled carbon-silver nanohybrids and show their promise as a new class of eco-friendly materials for light-driven catalytic applications.

2.
Chem Commun (Camb) ; 54(9): 1085-1088, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29327027

ABSTRACT

Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

3.
Nat Nanotechnol ; 5(8): 584-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20676090

ABSTRACT

Nanostructured biological materials inspire the creation of materials with tunable mechanical properties. Strong cellulose nanofibrils derived from bacteria or wood can form ductile or tough networks that are suitable as functional materials. Here, we show that freeze-dried bacterial cellulose nanofibril aerogels can be used as templates for making lightweight porous magnetic aerogels, which can be compacted into a stiff magnetic nanopaper. The 20-70-nm-thick cellulose nanofibrils act as templates for the non-agglomerated growth of ferromagnetic cobalt ferrite nanoparticles (diameter, 40-120 nm). Unlike solvent-swollen gels and ferrogels, our magnetic aerogel is dry, lightweight, porous (98%), flexible, and can be actuated by a small household magnet. Moreover, it can absorb water and release it upon compression. Owing to their flexibility, high porosity and surface area, these aerogels are expected to be useful in microfluidics devices and as electronic actuators.


Subject(s)
Cellulose/chemistry , Crystallization/methods , Magnetics/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Paper , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
4.
Biomacromolecules ; 8(6): 1934-41, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17474776

ABSTRACT

Toward exploiting the attractive mechanical properties of cellulose I nanoelements, a novel route is demonstrated, which combines enzymatic hydrolysis and mechanical shearing. Previously, an aggressive acid hydrolysis and sonication of cellulose I containing fibers was shown to lead to a network of weakly hydrogen-bonded rodlike cellulose elements typically with a low aspect ratio. On the other hand, high mechanical shearing resulted in longer and entangled nanoscale cellulose elements leading to stronger networks and gels. Nevertheless, a widespread use of the latter concept has been hindered because of lack of feasible methods of preparation, suggesting a combination of mild hydrolysis and shearing to disintegrate cellulose I containing fibers into high aspect ratio cellulose I nanoscale elements. In this work, mild enzymatic hydrolysis has been introduced and combined with mechanical shearing and a high-pressure homogenization, leading to a controlled fibrillation down to nanoscale and a network of long and highly entangled cellulose I elements. The resulting strong aqueous gels exhibit more than 5 orders of magnitude tunable storage modulus G' upon changing the concentration. Cryotransmission electron microscopy, atomic force microscopy, and cross-polarization/magic-angle spinning (CP/MAS) 13C NMR suggest that the cellulose I structural elements obtained are dominated by two fractions, one with lateral dimension of 5-6 nm and one with lateral dimensions of about 10-20 nm. The thicker diameter regions may act as the junction zones for the networks. The resulting material will herein be referred to as MFC (microfibrillated cellulose). Dynamical rheology showed that the aqueous suspensions behaved as gels in the whole investigated concentration range 0.125-5.9% w/w, G' ranging from 1.5 Pa to 105 Pa. The maximum G' was high, about 2 orders of magnitude larger than typically observed for the corresponding nonentangled low aspect ratio cellulose I gels, and G' scales with concentration with the power of approximately three. The described preparation method of MFC allows control over the final properties that opens novel applications in materials science, for example, as reinforcement in composites and as templates for surface modification.


Subject(s)
Cellulose/chemistry , Hydrolysis , Cryoelectron Microscopy , Gels , Hydrogen-Ion Concentration , Macromolecular Substances/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanoparticles , Rheology , Stress, Mechanical , Temperature , Viscosity , Wood
5.
J Colloid Interface Sci ; 301(1): 92-7, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16765975

ABSTRACT

We show that ionically self-assembled polyelectrolyte/surfactant complexes allow a facile route to tailor the electrical surface resistance of paper sheets for antistatic dissipative regime. We use anionic polyelectrolyte carboxymethyl cellulose (CMC) where cationic alkyltrimethylammonium chloride surfactants (C(n)TAC) with the alkyl chain lengths n=12, 14 or 16 methyl units are ionically complexed by precipitation from aqueous solutions. Such alkyl chains are sufficiently long to allow self-assembly in solid films after solvent evaporation. Short chain lengths, e.g., n=8, did not lead to precipitation. Small angle X-ray scattering indicates cylindrical self-assembly in bulk samples. Upon exposing bulk samples under humidity of 50% RH for 18 h, conductivity of ca. 10(-5) S/cm at room temperature is achieved based on AC-impedance analysis. Flexographic printing and spray coating were selected to conceptually test the feasibility as paper coatings and surface sheet resistances of ca. 10(9) Omega are reached. The results indicate that self-assembled polyelectrolyte/surfactant complexes can allow sufficient conductivity levels for antistatic paper coatings potentially due to protonic conductivity and suggest to develop processes and materials for realistic applications.

6.
Eur Phys J E Soft Matter ; 12(2): 333-345, 2003 Oct.
Article in English | MEDLINE | ID: mdl-15007669

ABSTRACT

Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered structures can appear in the compatibility region. The equilibria between microphase-separated states, the coil-rich isotropic liquid and the rod-rich nematic are discussed in detail. In the regime where hairy-rod supramolecules with a high grafting density appear as a result of the association, three phase diagram types are possible depending on the value of the association energy. In the low grafting density regime only the lamellar microstructure is proven to be stable.

7.
Eur Phys J E Soft Matter ; 10(1): 69-75, 2003 Jan.
Article in English | MEDLINE | ID: mdl-15011081

ABSTRACT

We demonstrate that complexation of dodecylbenzenesulphonic acid, DBSA, to a diblock copolymer of polystyrene- block-poly(4-vinylpyridine), PS- block-P4VP, leads to polymeric supramolecules PS- block-P4VP(DBSA)y (y = 1.0, 1.5, and 2.0), which self-organize with a particularly large lamellar periodicity in excess of 1000 A. The structures consist of alternating PS and P4VP(DBSA)y layers, where the latter contains smaller internal structure, probably lamellar. The DBSA side chains are bonded to the pyridines by protonation and hydrogen bonding and they effectively plasticize the material. In this way relatively well-developed structures are obtained even without annealing or macroscopic alignment. Transmission and reflectance measurements show that a relatively narrow and incomplete bandgap exists for supramolecules of high molecular weight block copolymer at ca. 460 nm.

8.
Science ; 280(5363): 557-60, 1998 Apr 24.
Article in English | MEDLINE | ID: mdl-9554840

ABSTRACT

It was demonstrated that polymeric supramolecular nanostructures with several length scales allow straightforward tailoring of hierarchical order-disorder and order-order transitions and the concurrent switching of functional properties. Poly(4-vinyl pyridine) (P4VP) was stoichiometrically protonated with methane sulfonic acid (MSA) to form P4VP(MSA)1.0, which was then hydrogen-bonded to pentadecylphenol. Microphase separation, re-entrant closed-loop macrophase separation, and high-temperature macrophase separation were observed. When MSA and pentadecylphenol were complexed to the P4VP block of a microphase-separated diblock copolymer poly[styrene-block-(4-vinyl pyridine)], self-organized structures-in-structures were obtained whose hierarchical phase transitions can be controlled systematically. This microstructural control on two different length scales (in the present case, at 48 and 350 angstroms) was then used to introduce temperature-dependent transitions in electrical conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...