Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Imaging Radiat Oncol ; 13: 44-49, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32551371

ABSTRACT

BACKGROUND AND PURPOSE: Computed tomography (CT) scanning is the basis for radiation treatment planning, but the 50-cm standard scanning field of view (sFOV) may be too small for imaging larger patients. We evaluated the 65-cm high-definition (HD) FOV of a large-bore CT scanner for CT number accuracy, geometric distortion, image quality degradation, and dosimetric accuracy of photon treatment plans. MATERIALS AND METHODS: CT number accuracy was tested by placing two 16-cm acrylic phantoms on either side of a 40-cm phantom to simulate a large patient extending beyond the 50-cm-diameter standard scanning FOV. Dosimetric accuracy was tested using anthropomorphic pelvis and thorax phantoms, with additional acrylic body parts on either side of the phantoms. Two volumetric modulated arc therapy beams (a 15-MV and a 6-MV) were used to cover the planning target volumes. Two-dimensional dose distributions were evaluated with GAFChromic film and point dose accuracy was checked with multiple thermoluminescent dosimeter (TLD) capsules placed in the phantoms. Image quality was tested by placing an American College of Radiology accreditation phantom inside the 40-cm phantom. RESULTS: The HD FOV showed substantial changes in CT numbers, with differences of 314 HU-725 HU at different density levels. The volume of the body parts extending into the HD FOV was distorted. However, TLD-reported doses for all PTVs agreed within ± 3%. Dose agreement in organs at risk were within the passing criteria, and the gamma index pass rate was >97%. Image quality was degraded. CONCLUSIONS: The HD FOV option is adequate for RT simulation and met accreditation standards, although care should be taken during contouring because of reduced image quality.

2.
Adv Radiat Oncol ; 4(2): 362-366, 2019.
Article in English | MEDLINE | ID: mdl-31011682

ABSTRACT

PURPOSE: This study aimed to report on the safety, feasibility, and workflow of using magnetic resonance imaging (MRI) simulation, while immobilized in the treatment position, for radiation therapy treatment planning in the pediatric population. METHODS AND MATERIALS: Between May and December 2017, 10 pediatric patients completed both MRI and computed tomography imaging simulation in treatment immobilization for radiation therapy planning for central nervous system disease. We report our initial institutional experience and workflow of the use of MRI simulation in immobilization for treatment planning in this population. RESULTS: Ten pediatric patients successfully underwent MRI and computed tomography imaging simulation for CNS disease. Two patients required anesthesia for sedation during the simulations. From our initial experience, MRI simulation was tolerated by all 10 pediatric patients without any safety or clinical issues, including those who required anesthesia. CONCLUSIONS: Our initial experience supports the use of MRI simulation for radiation treatment planning in the pediatric population, with and without anesthetic sedation, as a safe and feasible image-guidance tool. This is particularly useful in the treatment of pediatric patients because MRI simulation enables superior, soft-tissue, anatomic imaging for a more robust delineation of organs at risk and target volumes without increasing radiation exposure.

3.
BMC Cancer ; 18(1): 903, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30231854

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) has improved capacity to visualize tumor and soft tissue involvement in head and neck cancers. Using advanced MRI, we can interrogate cell density using diffusion weighted imaging, a quantitative imaging that can be used during radiotherapy, when diffuse inflammatory reaction precludes PET imaging, and can assist with target delineation as well. Correlation of circulating tumor cells (CTCs) measurements with 3D quantitative tumor characterization could potentially allow selective, patient-specific response-adapted escalation or de-escalation of local therapy, and improve the therapeutic ratio, curing the greatest number of patients with the least toxicity. METHODS: The proposed study is designed as a prospective observational study and will collect pretreatment CT, MRI and PET/CT images, weekly serial MR imaging during RT and post treatment CT, MRI and PET/CT images. In addition, blood sample will be collected for biomarker analysis at those time intervals. CTC assessments will be performed on the CellSave tube using the FDA-approved CellSearch® Circulating Tumor Cell Kit (Janssen Diagnostics), and plasma from the EDTA blood samples will be collected, labeled with a de-identifying number, and stored at - 80 °C for future analyses. DISCUSSION: The primary objective of the study is to evaluate the prognostic value and correlation of weekly tumor response kinetics (gross tumor volume and MR signal changes) and circulating tumor cells of mucosal head and neck cancers during radiation therapy using MRI in predicting treatment response and clinical outcomes. This study will provide landmark information as to the utility of CTCs ('liquid biopsy) and tumor-specific functional quantitative imaging changes during treatment to guide personalization of treatment for future patients. Combining the biological information from CTCs and the structural information from MRI may provide more information than either modality alone. In addition, this study could potentially allow us to determine the optimal time to obtain MR imaging and/ or CTCs during radiotherapy to assess tumor response and provide guidance for patient selection and stratification for future dose escalation or de-escalation strategies. TRIAL REGISTRATION: Clinicaltrials.gov ( NCT03491176 ). Date of registration: 9th April 2018. (retrospectively registered). Date of enrolment of the first participant: 30th May 2017.


Subject(s)
Clinical Protocols , Head and Neck Neoplasms/diagnosis , Magnetic Resonance Imaging , Neoplastic Cells, Circulating/pathology , Biomarkers , Female , Head and Neck Neoplasms/therapy , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Liquid Biopsy , Magnetic Resonance Imaging/methods , Male , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...