Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 5589, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32221406

ABSTRACT

Carbon nanotubes can be utilized in several ways to enhance the performance of silicon-based anodes. In the present work, thermally carbonized mesoporous silicon (TCPSi) microparticles and single-walled carbon nanotubes (CNTs) are conjugated to create a hybrid material that performs as the Li-ion battery anode better than the physical mixture of TCPSi and CNTs. It is found out that the way the conjugation is done has an essential role in the performance of the anode. The conjugation should be made between negatively charged TCPSi and positively charged CNTs. Based on the electrochemical experiments it is concluded that the positive charges, i.e., excess amine groups of the hybrid material interfere with the diffusion of the lithium cations and thus they should be removed from the anode. Through the saturation of the excess positive amine groups on the CNTs with succinic anhydride, the performance of the hybrid material is even further enhanced.

2.
Phys Med ; 45 Suppl 1: S2, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29413849

ABSTRACT

Monte Carlo simulations can provide powerful insight into the physical phenomena and geometrical interactions of linear accelerator beams. This insight can be used to understand the phenomena that govern the beam characteristic and, for instance, to guide the development of treatment planning systems. In this study, we use the VirtuaLinac, a cloud-based application to model the treatment head of the Varian TrueBeam linear accelerator. VirtuaLinac implements the treatment head geometry into the Monte Carlo code Geant4, which is then utilized to provide the physics and numerical engine for the simulations. We consider both open fields and fields limited by multi-leaf collimators and compute the dose deposited in a water phantom. We then compare the simulation results with experimental measurements. The simulated data are also used to extract some of the characteristics of the multi-leaf collimators and to evaluate their impact on the beam properties and the dose distribution.

3.
Sci Rep ; 7(1): 7423, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785040

ABSTRACT

We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length [Formula: see text] the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R N as a function of the chain length N must be known. To this end, we first derive a semi-analytic scaling form for R N, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the trans side friction based on MD simulations. Augmented with these two factors, the theory shows that there are three main regimes for the scaling of the average translocation time τ ∝ N α . In the rod [Formula: see text], Gaussian [Formula: see text] and excluded volume chain [Formula: see text] ≫ 10 6 limits, α = 2, 3/2 and 1 + ν, respectively, where ν is the Flory exponent. Our results are in good agreement with available simulations and experimental data.


Subject(s)
DNA/metabolism , Nanopores , DNA/chemistry , Models, Chemical , Molecular Dynamics Simulation
4.
J Chem Phys ; 143(7): 074905, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26298154

ABSTRACT

We develop a theory for polymer translocation driven by a time-dependent force through an oscillating nanopore. To this end, we extend the iso-flux tension propagation theory [Sarabadani et al., J. Chem. Phys. 141, 214907 (2014)] for such a setup. We assume that the external driving force in the pore has a component oscillating in time, and the flickering pore is similarly described by an oscillating term in the pore friction. In addition to numerically solving the model, we derive analytical approximations that are in good agreement with the numerical simulations. Our results show that by controlling either the force or pore oscillations, the translocation process can be either sped up or slowed down depending on the frequency of the oscillations and the characteristic time scale of the process. We also show that while in the low and high frequency limits, the translocation time τ follows the established scaling relation with respect to chain length N0, in the intermediate frequency regime small periodic, fluctuations can have drastic effects on the dynamical scaling. The results can be easily generalized for non-periodic oscillations and elucidate the role of time dependent forces and pore oscillations in driven polymer translocation.


Subject(s)
Models, Theoretical , Nanopores , Polymers/chemistry , Computer Simulation , Friction , Periodicity
5.
J Chem Phys ; 142(22): 224906, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071730

ABSTRACT

The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.

6.
J Chem Phys ; 141(21): 214907, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481169

ABSTRACT

We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time τ, which captures the asymptotic result τ∝N0(1+ν), where N0 is the chain length and ν is the Flory exponent. In addition, we derive the leading correction-to-scaling term to τ and show that all terms of order N0(2ν) exactly cancel out, leaving only a finite-chain length correction term due to the effective pore friction, which is linearly proportional to N0. We use the model to numerically include fluctuations in the initial configuration of the polymer chain in addition to thermal noise. We show that when the cis side fluctuations are properly accounted for, the model not only reproduces previously known results but also considerably improves the estimates of the monomer waiting time distribution and the time evolution of the translocation coordinate s(t), showing excellent agreement with MD simulations.


Subject(s)
Motion , Polymers/chemistry , Friction , Molecular Conformation , Molecular Dynamics Simulation , Porosity
7.
J Chem Phys ; 140(23): 234906, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952567

ABSTRACT

We study the driven transport of polymers in a periodically patterned channel using Langevin dynamics simulations in two dimensions. The channel walls are patterned with periodically alternating patches of attractive and non-attractive particles that act as trapping sites for the polymer. We find that the system shows rich dynamical behavior, observing giant diffusion, negative differential mobility, and several different transition mechanisms between the attractive patches. We also show that the channel can act as an efficient high-pass filter for polymers longer than a threshold length Nthr, which can be tuned by adjusting the length of the attractive patches and the driving force. Our findings suggest the possibility of fabricating polymer filtration devices based on patterned nanochannels.

8.
J Chem Phys ; 140(5): 054907, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511979

ABSTRACT

The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.


Subject(s)
Polymers/chemistry , Thermodynamics
9.
J Chem Phys ; 136(20): 205104, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22667592

ABSTRACT

We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.


Subject(s)
Motion , Nanopores , Polymers/chemistry , Models, Chemical , Porosity , Thermodynamics
10.
J Chem Phys ; 133(18): 184902, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-21073227

ABSTRACT

We study the dynamics of flexible, semiflexible, and self-avoiding polymer chains moving under a Kramers metastable potential. Due to thermal noise, the polymers, initially placed in the metastable well, can cross the potential barrier, but these events are extremely rare if the barrier is much larger than thermal energy. To speed up the slow rate processes in computer simulations, we extend the recently proposed path integral hyperdynamics method to the cases of polymers. We consider the cases where the polymers' radii of gyration are comparable to the distance between the well bottom and the barrier top. We find that, for a flexible polymers, the crossing rate (R) monotonically decreases with chain contour length (L), but with the magnitude much larger than the Kramers rate in the globular limit. For a semiflexible polymer, the crossing rate decreases with L but becomes nearly constant for large L. For a fixed L, the crossing rate becomes maximum at an intermediate bending stiffness. For the self-avoiding chain, the rate is a nonmonotonic function of L, first decreasing with L, and then, above a certain length, increasing with L. These findings can be instrumental for efficient separation of biopolymers.


Subject(s)
Computer Simulation , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...