Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 62(2): 323-333, 2018 08.
Article in English | MEDLINE | ID: mdl-29654362

ABSTRACT

Directional well drilling and hydraulic fracturing has enabled energy production from previously inaccessible resources, but caused vegetation conversion and landscape fragmentation, often in relatively undisturbed habitats. We improve forecasts of future ecological impacts from unconventional oil and gas play developments using a new, more spatially-explicit approach. We applied an energy production outlook model, which used geologic and economic data from thousands of wells and three oil price scenarios, to map future drilling patterns and evaluate the spatial distribution of vegetation conversion and habitat impacts. We forecast where future well pad construction may be most intense, illustrating with an example from the Eagle Ford Shale Play of Texas. We also illustrate the ecological utility of this approach using the Spot-tailed Earless Lizard (Holbrookia lacerata) as the focal species, which historically occupied much of the Eagle Ford and awaits a federal decision for possible Endangered Species Act protection. We found that ~17,000-45,500 wells would be drilled 2017‒2045 resulting in vegetation conversion of ~26,485-70,623 ha (0.73-1.96% of pre-development vegetation), depending on price scenario ($40-$80/barrel). Grasslands and row crop habitats were most affected (2.30 and 2.82% areal vegetation reduction). Our approach improves forecasts of where and to what extent future energy development in unconventional plays may change land-use and ecosystem services, enabling natural resource managers to anticipate and direct on-the-ground conservation actions to places where they will most effectively mitigate ecological impacts of well pads and associated infrastructure.


Subject(s)
Conservation of Natural Resources/trends , Environmental Pollution/prevention & control , Oil and Gas Fields , Oil and Gas Industry/trends , Ecology , Environmental Pollution/analysis , Forecasting , Texas
2.
Environ Sci Technol ; 51(24): 14453-14461, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-28841009

ABSTRACT

Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 109 gal and FP of 85 × 109 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.


Subject(s)
Hydraulic Fracking , Wastewater , Water Wells , Natural Gas , Oil and Gas Fields , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...