Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 8716, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610357

ABSTRACT

The use of inorganic binder for briquetting of subbituminous coal and torrefied biomass for energy generation is scarce. The present study focuses on the physicomechanical durability and energy content of briquettes produced from subbituminous coal (SubC) and torrefied biomass (TM) using bentonite as binder. Briquettes were produced using 95% SubC and 5% TM. Bentonite was varied at 2-10% of the total SubC and TM weight. The briquettes were produced with a constant pressure (28 MPa) in a hydraulic press. The briquettes were primarily cured at room temperature and then at 300 [Formula: see text] in a tubular furnace under an inert condition for 60 min. The density and water resistance (WRI) of the briquettes were evaluated. Drop to fracture (DF), impact resistance index (IRI), cold crushing strength (CCS) and tumbling strength index (TSI+3 mm) of the briquette were obtained. The reactivity index (RI), proximate, ultimate and calorific values analyses were assessed based on different ASTM standards. Microstructural studies and elemental mapping were carried out using scanning electron microscope equipped with EDS and electron probe microanalyzer. The density increased with increment in bentonite content. The WRI decreased with increase in bentonite while the least (95.21%) was obtained at 10% binder content. The DF and IRI ranges from 100 to 150 and 2000-3000, respectively. The CCS were in the range of 19.71 to 40.23 MPa. The RI varies from 34 to 50%. Fixed carbon, carbon and calorific values were impaired as the bentonite content in the briquette increases. Oxygen and silica bridges with mechanical interlocking were observed on the micrographs of the briquettes. The briquettes produced with 2% bentonite content have better physicomechanical durability with equivalent energy content. It is recommended as feedstock for thermal and metallurgical applications.


Subject(s)
Bentonite , Coal , Biomass , Carbon , Water
2.
Sci Rep ; 12(1): 2918, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190666

ABSTRACT

The beneficial effects of biofuels as components of the worldwide energy supply are unquantifiable because they have versatile applications. However, an adequate understanding of the chemical properties of typical biomass is an integral aspect of maximizing the energy potentials because it is susceptible to biomass behavior during the conversion process, especially anaerobic digestion. Therefore, this study investigated the physicochemical characteristics of selected lignocellulose biomass, namely; cow dung, mango pulp, and Chromolaena odorata of Nigerian origin. The raw biomasses were characterized by proximate, calorific, ultimate, compositional, and microbial (for cow dung only) analyses using ASTM standards and equipment. Raw biomass characterization showed that cow dung, mango pulp, and Chromolaena odorata leaves recorded percentages; fixed carbon, volatile matter, and ash contents in addition to calorific values in the ranges of 6.22-7.25%, 5.02-7.79%, 1.14-1.91,% and 13.77-16.16 MJ/kg, respectively. The ultimate analysis of cow dung, mango pulp and Chromolaena odorata recorded carbon (43.08, 39.98, 41.69%); hydrogen (7.87, 6.74, 9.86%); nitrogen (1.53, 1.34, 1.51%); sulphur (0.46, 0.12, 0.25%) and oxygen (47.06, 51.82, 46.69%), respectively. Compositional analysis of the biomass gave percentages in the range of 7.47-11.37 for hemicellulose, 0.22-6.33 for lignin, and 3.71-12.03 for cellulose, while the microbial analysis of cow dung gave total bacteria counts of 5.78 × 108 and 3.93 × 105 cfu/g on wet and dry bases, respectively, which implied that it was rich in microbial colonies, evidently from the various species found, such as Escherichia coli, Staphylococcus aureus, Bacillus cereus, Pseudomonas aureginosa, Proteus morganii, and Micrococcus spp. In this regard, the physicochemical properties of selected biomass of Nigerian origin were established to conform with those of the literature and thus can be regarded as suitable feedstock for anaerobic digestion resulting in methane-rich biogas products.

3.
Heliyon ; 7(9): e08025, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589634

ABSTRACT

The paper focuses on collection of information on recent multifaceted usage of biomass materials with critical examination on its sustainability. The use of biomass is becoming popular, with wide global acceptance as it is considered as green technology. The use of biomass products across industrial parallels, the material combination and production processes were elucidated in this paper. Biomass materials are seen as affordable alternative to conventional materials for domestic and industrial applications. The multifaceted use of biomass, which includes, energy generation, metallurgical applications, construction purposes, reinforcement in metal matrix composite, microelectromechanical system, biochemical and traditional medicine were discussed. This underscores the need to develop a sustainable plan to meet with its diverse usage to be beyond laboratory efforts. This paper examined whether the availability of biomass can sustain its multifaceted usage or not. It also examined the modalities to ensure sustainable use of biomass. Different policies were highlighted and discussed in line with continuous multifaceted use of biomass.

4.
Sci Rep ; 11(1): 14845, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34290323

ABSTRACT

The utilization of agro-residues ash as complementary reinforcing materials continues to gain prominence for metal matrix composite (MMCs) development. A rarely investigated but largely available ash among these agro-residues is the palm kernel shell ash (PKSA). Thus, the present study investigates the influence of PKSA particulates hybridized with SiC on the physico-mechanical properties and microstructure of Al6063 metal composites. The composites are synthesized using the double stir-casting technique with SiC held constant at 2 wt.%, while the PKSA contents are varied from 0 to 8 wt.%. The phases present and morphology of the composites are investigated using X-ray diffractometer (XRD) and scanning electron microscopy (SEM), respectively. The density, porosity, hardness, tensile and fracture toughness tests are carried out on the hybrid composites. X-ray diffractometer revealed that for Al 6063, only Al cubic crystal system was identifiable within the matrix. However, for the reinforced composites, major phases identified are Al, Fe3Si, SiC, MgO, and SiO2. The SEM images show that the particulates reinforcements (SiC and PKSA) were uniformly dispersed in the matrix. The percentage porosity for the composites ranged from 2.06 to 2.39%. In addition, hardness, yield strength and ultimate tensile strength of the composites are about 10.3%, 18.5% and 10.4%, respectively better than for Al 6063. However, the percent elongation and fracture toughness are lower for the hybrid composites than for Al 6063 and SiC reinforced composite with values decreasing with increase in ash content. Hence, the MMCs produced will be applicable for light-weight engineering applications.

5.
Sci Rep ; 11(1): 547, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436747

ABSTRACT

The behaviour of ash of fuel affects its thermal efficiency when in use. The ash analyses of bio-coal briquettes developed from lean grade coal and torrefied woody biomass have received limited intensive study. Therefore, the present study aims at analysing the ashes of briquette made from lean grade coal and torrefied woody biomass using blended coal tar pitch and molasses as the binder. Bio-coal briquettes were produced from coal and torrefied biomass in various hybrid ratios. Ashing of various briquettes was done in a muffle furnace at 850 °C for 3 h. Mineral phases of the ash were identified using an X-ray Diffractometer (XRD), while the mineral oxides were obtained using an X-ray Fluorescence Spectrometer. The AFT700 Furnace was used with its AFT700 software to evaluate the ash fusion temperatures of the ashes. The XRD patterns look similar, and quartz was found to be the dominant mineral phase present in the raw coal and bio-coal briquettes. The SiO2 (57-58%), Al2O3 (19-21%), and Fe2O3 (8-9%) were the major oxides observed in the ashes. The final fusion temperatures of the ashes range from 1300-1350 °C. The compositions of the ashes of the bio-coal briquettes are classified as detrital minerals. It was concluded that the addition of torrefied biomass (≤ [Formula: see text]and blended binder ([Formula: see text] 15%) to coal gave a negligible impact on the ashes of the resultant bio-coal briquettes.

6.
Heliyon ; 6(7): e04444, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32695915

ABSTRACT

Quenching is one of the major processes of heat treatment of medium carbon steel that aims at improving its mechanical properties. However, the effectiveness of this process is dependent on several control factors that must be maximized to obtain optimum results in terms of hardness, yield strength, ultimate tensile strength among others. This study aims at optimizing the process of improving the mechanical properties of medium carbon steel by varying some key factors like the quenchant used (A), heat treatment temperature (B), and soaking time (C). The measured responses in this study were the hardness, yield strength (YS), and ultimate tensile strength (UTS). Optimization was conducted in two stages. The first stage dealt with the mono-optimization of process parameters using Taguchi's Signal-to-Noise (S/N) ratio. A total of nine (9) experiments were performed based on standard L9 orthogonal array because each of the three control factors has three (3) levels. The second stage was multi-objective optimization using Taguchi-based grey relational analysis (GRA). The optimal conditions for hardness, YS, and UTS were obtained at A2B3C3, A3B2C3, and A3B3C3, respectively. Using ANOVA as statistical analysis, it was observed that the soaking time was the main control factor for all three measured responses (31.95% contribution ratio for hardness, 62.46%, and 66.76% for YS and UTS, respectively), while the quenchant had the least contribution. Analysis of the Taguchi-based GRA revealed that the results obtained are in total conformance to that of the Taguchi method, with soaking time having the highest contribution ratio of 69.41%.

7.
ScientificWorldJournal ; 2020: 2756734, 2020.
Article in English | MEDLINE | ID: mdl-32669981

ABSTRACT

The inhibitive effect of mebendazole (MBZ) on the corrosion of low-carbon steel in H2SO4 was investigated by gravimetric and electrochemical techniques as well as examination of specimens in the scanning electron microscope with attached energy dispersive X-ray spectrometer (EDS). From gravimetric analysis, the highest inhibition efficiency of about 96.6% was obtained for 1.0 g of inhibitor in H2SO4 solution at 24 h, while with longer exposure times of between 72 to 120 h, the efficiencies averaged between 92 and 95%. Tafel extrapolations from the polarization curves showed that 1.0 g MBZ gave a maximum inhibition efficiency of approximately 99% for the investigation conducted at 30°C, whereas 1.5 g of MBZ gave a maximum inhibition efficiency of about 85% at 60°C. Inhibition efficiency increased with increasing concentrations of MBZ and decreased at elevated temperatures. The inhibitive action was attributed to physical adsorption of MBZ species on the mild steel surface which followed the Langmuir adsorption isotherm. MBZ performed as a mixed-type inhibitor on mild steel in dilute H2SO4.

8.
Heliyon ; 6(3): e03582, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32195400

ABSTRACT

The impact of torrefaction temperature on the ignitability, fuel ratio and ash fusion temperatures of two tropical deciduous woods (Teak and Melina) were investigated in a setup of tubular furnace. The properties considered are calorific value, fuel ratio, ignitability index, ash compositions and ash fusion temperatures of the biomass. Six different temperatures (220, 240, 260, 280, 300 and 320 °C) at 60 min reaction time were considered. The results indicated that as torrefaction temperature increased, the calorific value, fuel ratio and ignitability index of the biomass also increased. The ignitability index of biomass (40-63) was better than the value (35) recommended for fuel applicable in thermal plants for power generation. The ash compositional analysis revealed that there was no variation in the quantity of SiO2, Al2O3, CaO along with other minerals for the raw and torrefied biomass. This implied that the temperature up to 320 °C has no significant impact on the compositions of biomass ash during torrefaction. The ash fusion temperature test showed that the biomass ash softens at ≈ 1200 °C and finally fused at ≈ 1300 °C. The study concluded that an increase in torrefaction temperature increases the thermal properties of the torrefied biomass without affecting the compositions of biomass ash or lowering the ash fusion temperatures.

9.
Heliyon ; 5(7): e02160, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31384690

ABSTRACT

Coal processing industries generate millions of tons of fines (<3 mm) during mining operation and are often considered as wastes. These wastes have enormous potential in serving as energy and metallurgical operation feedstock. One avenue for its use is densification into briquettes or pelletizes. Various briquetting techniques have been adopted in the past few decades; however, the main issues upfront in commercializing these techniques are significant binder cost and poor mechanical integrity. Therefore, the present study concentrates on utilizing commonly available organic binder along with pretreated biomass in developing coal fine briquettes. Briquettes were produced after initial pretreatment of the raw materials under a load of 2 tons. Briquettes were cured in an inert environment and eventually characterized for its main litmus requirements (physical properties). It was observed that pitch-molasses bonded briquettes have better physical properties leading to good mechanical integrity than briquettes produced from individual binder. The proximate, ultimate and calorific value analyses of the briquettes do not deteriorate but mildly improved compared to the raw coal fines. With a density of 1.18-1.32 g/cm3, drop to fracture that is greater than 100 (times/2 m), impact resistance index well above 6000, water resistance index of 99% and cold crushing strength of 9 MPa, pitch-molasses bonded briquettes clearly surpassed recommended physical properties benchmarked for briquettes of industrial and domestic end use. The physical properties of the briquettes favorably meet requirements as feedstock for rotary kiln direct reduced iron and COREX iron-making processes as well as fuel for thermal operations.

10.
Data Brief ; 21: 1496-1503, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30510979

ABSTRACT

The dataset represented in this article describe a diagnostic schedule for a defective LC-195V5 CNC milling machine using PERT. The efficiency of the technicians who repaired the CNC machine tools was measured based on fault location within the shortest possible time. A diagnostic schedule was developed which showed the sequential means of troubleshooting within a possible shortest time. Two approaches were employed. Forward Pass (FP), which involved the diagnosis from electrical parts through Computer (CNC) to mechanical components and Backward Pass (BP) which involved the diagnosis from computer component through electrical parts to mechanical parts. Three different levels of expertise (trials) were used for each of the mode of diagnosis and the time to diagnose each component part was recorded. Two separate PERT network diagrams were drawn based on the inter-relationship of the component parts of the machine and their Critical Paths were determined.

11.
Data Brief ; 21: 1552-1557, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30480067

ABSTRACT

The quality of steel rods used in structural applications has been subjected to continuous scrutiny by researchers in Nigeria. In this data article, the experimental data on the chemical and mechanical properties of steel rods from collapsed building sites and local steel plants have been reported. The chemical composition consisting of carbon, manganese, silicon, sulphur, phosphorus among other elements were recorded using an optical emission spectrometer. Some of the main elements were used to evaluate the carbon equivalent value and the results are reported in this article. The yield strength, ultimate tensile strength and percentage elongation were also presented as obtained from the universal testing machine. The hardness values of the steel rod samples were also presented.

12.
Data Brief ; 20: 1224-1228, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30238031

ABSTRACT

Several wastes can be instrumental in the improvement of the mechanical properties of medium carbon steel when quenched. The quenching media employed such as coconut water (CW), pap water (PW) and spent engine oil (SPE) have been largely considered as wastes. The data in this article are related to the research article titled "Mechanical Properties Improvement Evaluation of Medium Carbon Steels Quenched in Different Media" (Ikubanni et al., 2017) [1]. The article provides information on the mechanical properties evaluation of medium carbon steel quenched in different media. Twenty-seven (27) samples of medium carbon steel samples were heated to temperatures of 730 °C, 760 °C and 790 °C and soaked for 30, 45 and 60 min respectively. The test results recorded include hardness value, yield strength (YS) and the ultimate tensile strength (UTS) for each of the samples at different heating temperatures and soaking time for the different quenching media.

SELECTION OF CITATIONS
SEARCH DETAIL
...