Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(8): 105001, 2023 08.
Article in English | MEDLINE | ID: mdl-37394006

ABSTRACT

NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.


Subject(s)
Electron Transport Complex I , Ubiquinone , Animals , Cattle , Ubiquinone/metabolism , Electron Transport Complex I/metabolism , Mitochondrial Membranes/metabolism , NAD/metabolism , Protons , Liposomes
2.
J Biol Chem ; 298(7): 102075, 2022 07.
Article in English | MEDLINE | ID: mdl-35643318

ABSTRACT

The ubiquinone (UQ) reduction step catalyzed by NADH-UQ oxidoreductase (mitochondrial respiratory complex I) is key to triggering proton translocation across the inner mitochondrial membrane. Structural studies have identified a long, narrow, UQ-accessing tunnel within the enzyme. We previously demonstrated that synthetic oversized UQs, which are unlikely to transit this narrow tunnel, are catalytically reduced by native complex I embedded in submitochondrial particles but not by the isolated enzyme. To explain this contradiction, we hypothesized that access of oversized UQs to the reaction site is obstructed in the isolated enzyme because their access route is altered following detergent solubilization from the inner mitochondrial membrane. In the present study, we investigated this using two pairs of photoreactive UQs (pUQm-1/pUQp-1 and pUQm-2/pUQp-2), with each pair having the same chemical properties except for a ∼1.0 Å difference in side-chain widths. Despite this subtle difference, reduction of the wider pUQs by the isolated complex was significantly slower than of the narrower pUQs, but both were similarly reduced by the native enzyme. In addition, photoaffinity-labeling experiments using the four [125I]pUQs demonstrated that their side chains predominantly label the ND1 subunit with both enzymes but at different regions around the tunnel. Finally, we show that the suppressive effects of different types of inhibitors on the labeling significantly changed depending on [125I]pUQs used, indicating that [125I]pUQs and these inhibitors do not necessarily share a common binding cavity. Altogether, we conclude that the reaction behaviors of pUQs cannot be simply explained by the canonical UQ tunnel model.


Subject(s)
Electron Transport Complex I , Ubiquinone , Binding Sites , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Submitochondrial Particles/metabolism , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...