Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 30(4): 103612, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936701

ABSTRACT

Considering the economic and environmental role played by bees and their present threats it is necessary to develop food supplements favoring their health. The aim of this work was to isolate and characterize an immunomodulating probiotic capable to improve the health of honeybee colonies. For this purpose, bacterial strains were isolated from Apis mellifera bees (N = 180) obtained at three apiaries. A total of 44 strains were isolated and 9 of them were identified as Lactobacillus having the capacity to grow under saccharose osmotic stress, at pH 4.0 and possessing a wide susceptibility to antibiotics. Results allowed to select two strains but finally only one of them, strain A14.2 showed a very significant immunomodulating activity. This strain increased the expression of mRNA codifying the antimicrobial peptides 24 h post-administration. We evaluated its growth kinetics under aerobic and microaerobic conditions and its survival in the presence of high concentrations of saccharose. Results demonstrated that Lactobacillus casei A14.2 strain was highly tolerant to oxygen and that it was able to adapt to saccharose enriched environments (50% and 100% w/v). Finally, L. casei A14.2 strain was administered monthly during summer and early fall to 4 honeybee colonies (2 controls and 2 treatments). The results showed a gradual sustained decrease of infestation (p < 0.05) by the pathogenic Nosema spp. but no reduction in the infestation by the mite Varroa destructor. These results suggest that the administration of this potential probiotic, may increase the resistance of honeybee colonies to infectious diseases caused by Nosema spp.

3.
Biofouling ; 35(8): 922-937, 2019 09.
Article in English | MEDLINE | ID: mdl-31646895

ABSTRACT

The ability to form biofilms and the potential immunomodulatory properties of the human gastric isolate Lactobacillus rhamnosus UCO-25A were characterized in vitro. It was demonstrated that L. rhamnosus UCO-25A is able to form biofilms on abiotic and cell surfaces, and to modulate the inflammatory response triggered by Helicobacter pylori infection in gastric epithelial cells and THP-1 macrophages. L. rhamnosus UCO-25A exhibited a substantial anti-inflammatory effect in both cell lines and improved IL-10 levels produced by challenged macrophages. Additionally, UCO-25A protected AGS cells against H. pylori infection with a higher pathogen inhibition when a biofilm was formed. Given the importance of inflammation in H. pylori-mediated diseases, the differential modulation of the inflammatory response in the gastric mucosa by an autochthonous strain is an attractive alternative for improving H. pylori eradication and reducing the severity of the diseases that arise from the resulting chronic inflammation.


Subject(s)
Biofilms/growth & development , Epithelial Cells/microbiology , Helicobacter pylori/growth & development , Immunologic Factors/pharmacology , Lacticaseibacillus rhamnosus/growth & development , Macrophages/microbiology , Probiotics/pharmacology , Cell Line, Tumor , Cell Survival , Cytokines/biosynthesis , Epithelial Cells/drug effects , Epithelial Cells/immunology , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Helicobacter Infections/prevention & control , Humans , Lacticaseibacillus rhamnosus/isolation & purification , Macrophages/drug effects , Macrophages/immunology
4.
Microorganisms ; 4(3)2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27681929

ABSTRACT

Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms.

SELECTION OF CITATIONS
SEARCH DETAIL
...