Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Shock ; 39(2): 189-96, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23324889

ABSTRACT

Acute lung injury (ALI) is a clinical syndrome characterized by hypoxia, which is caused by the breakdown of the alveolar capillary barrier. Interleukin 1ß (IL-1ß), a cytokine released within the airspace in ALI, downregulates the α subunit of the epithelial sodium channel (αENaC) transcription and protein expression via p38 MAP kinase-dependent signaling. Although induction of the heat shock response can restore alveolar fluid clearance compromised by IL-1ß following the onset of severe hemorrhagic shock in rats, the mechanisms are not fully understood. In this study, we report that the induction of the heat shock response prevents IL-1ß-dependent inhibition of αENaC mRNA expression and subsequent channel function. Heat shock results in IRAK1 detergent insolubility and a disruption of Hsp90 binding to IRAK1. Likewise, TAK1, another client protein of Hsp90 and signaling component of the IL-1ß pathway, is also detergent insoluble after heat shock. Twenty-four hours after heat shock, both IRAK1 and TAK1 are again detergent soluble, which correlates with the IL-1ß-dependent p38 activation. Remarkably, IL-1ß-dependent p38 activation 24 h after heat shock did not result in an inhibition of αENaC mRNA expression and channel function. Further analysis demonstrates prolonged preservation of αENaC expression by the activation of the heat shock response that involves inducible Hsp70. Inhibition of Hsp70 at 24 h after heat shock results in p38-dependent IL-1ß inhibition of αENaC mRNA expression, whereas overexpression of Hsp70 attenuates the p38-dependent IL-1ß inhibition of αENaC mRNA expression. These studies demonstrate new mechanisms by which the induction of the heat shock response protects the barrier function of the alveolar epithelium in ALI.


Subject(s)
Acute Lung Injury/prevention & control , Amiloride/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Heat-Shock Response/physiology , Interleukin-1beta/physiology , Pulmonary Alveoli/metabolism , Animals , Benzoquinones/pharmacology , Cytoskeletal Proteins/pharmacology , DNA-Binding Proteins/pharmacology , Epithelial Sodium Channels/drug effects , HSP70 Heat-Shock Proteins/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , LIM Domain Proteins/pharmacology , Lactams, Macrocyclic/pharmacology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/physiology , Male , RNA, Messenger/metabolism , Rats , Respiratory Mucosa/metabolism , Up-Regulation
2.
FASEB J ; 27(3): 1095-106, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23221335

ABSTRACT

Patients with acute lung injury (ALI) who retain maximal alveolar fluid clearance (AFC) have better clinical outcomes. Experimental and small clinical studies have shown that ß2-adrenergic receptor (ß2AR) agonists enhance AFC via a cAMP-dependent mechanism. However, two multicenter phase 3 clinical trials failed to show that ß2AR agonists provide a survival advantage in patients with ALI. We hypothesized that IL-8, an important mediator of ALI, directly antagonizes the alveolar epithelial response to ß2AR agonists. Short-circuit current and whole-cell patch-clamping experiments revealed that IL-8 or its rat analog CINC-1 decreases by 50% ß2AR agonist-stimulated vectorial Cl(-) and net fluid transport across rat and human alveolar epithelial type II cells via a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis. This reduction was mediated by heterologous ß2AR desensitization and down-regulation (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/PI3K signaling pathway. Inhibition of CINC-1 restored ß2AR agonist-stimulated AFC in an experimental model of ALI in rats. Finally, consistent with the experimental results, high pulmonary edema fluid levels of IL-8 (>4000 pg/ml) were associated with impaired AFC in patients with ALI. These results demonstrate a novel role for IL-8 in inhibiting ß2AR agonist-stimulated alveolar epithelial fluid transport via GRK2/PI3K-dependent mechanisms.-Roux, J., McNicholas, C. M., Carles, M., Goolaerts, A., Houseman, B. T., Dickinson, D. A., Iles, K. E., Ware, L. B., Matthay, M. A., Pittet, J.-F. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism.


Subject(s)
Epithelial Cells/metabolism , Extracellular Fluid/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Interleukin-8/metabolism , Pulmonary Alveoli/metabolism , Respiratory Mucosa/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Adrenergic beta-2 Receptor Agonists/pharmacology , Animals , Biological Transport, Active/drug effects , Cells, Cultured , Chemokine CXCL1/metabolism , Chlorides/metabolism , Epithelial Cells/pathology , Humans , Interleukin-8/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Alveoli/pathology , Rats , Respiratory Mucosa/pathology
3.
FASEB J ; 26(7): 2919-29, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22490926

ABSTRACT

Infectious complications, predominantly pneumonia, are the most common cause of death in the postacute phase of stroke, although the mechanisms underlying the corresponding immunosuppression are not fully understood. We tested the hypothesis that activation of the α7 nicotinic acetylcholine receptor (α7nAChR) pathway is important in the stroke-induced increase in lung injury caused by Pseudomonas aeruginosa pneumonia in mice. Prior stroke increased lung vascular permeability caused by P. aeruginosa pneumonia and was associated with decreased lung neutrophil recruitment and bacterial clearance in mice. Pharmacologic inhibition (methyllycaconitine IC(50): 0.2-0.6 nM) or genetic deletion of the α7nAChR significantly (P<0.05) attenuates the effect of prior stroke on lung injury and mortality caused by P. aeruginosa pneumonia in mice. Finally, pretreatment with PNU-282987, a pharmacologic activator of the α7nAChR (EC(50): 0.2 µM), significantly (P<0.05) increased lung injury caused by P. aeruginosa pneumonia, significantly (P<0.05) decreased the release of KC, a major neutrophil chemokine, and significantly (P<0.05) decreased intracellular bacterial killing by a mouse alveolar macrophage cell line and primary mouse neutrophils. In summary, the α7 nicotinic cholinergic pathway plays an important role in mediating the systemic immunosuppression observed after stroke and directly contributes to more severe lung damage induced by P. aeruginosa.


Subject(s)
Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/etiology , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa , Receptors, Nicotinic/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Cell Line , Disease Models, Animal , Immune Tolerance , Infarction, Middle Cerebral Artery/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Pneumonia, Bacterial/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Pulmonary Edema/etiology , Receptors, Nicotinic/deficiency , Receptors, Nicotinic/genetics , Signal Transduction , alpha7 Nicotinic Acetylcholine Receptor
4.
Thorax ; 66(9): 788-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21768189

ABSTRACT

RATIONALE: Elevated plasma and bronchoalveolar lavage fluid plasminogen activator inhibitor 1 (PAI-1) levels are associated with adverse clinical outcome in patients with pneumonia caused by Pseudomonas aeruginosa. However, whether PAI-1 plays a pathogenic role in the breakdown of the alveolar-capillary barrier caused by P aeruginosa is unknown. OBJECTIVES: The role of PAI-1 in pulmonary host defence and survival during P aeruginosa pneumonia in mice was tested. The in vitro mechanisms by which P aeruginosa causes PAI-1 gene and protein expression in lung endothelial and epithelial cells were also examined. METHODS AND RESULTS: PAI-1 null and wild-type mice that were pretreated with the PAI-1 inhibitor Tiplaxtinin had a significantly lower increase in lung vascular permeability than wild-type littermates after the airspace instillation of 1×10(7) colony-forming units (CFU) of P aeruginosa bacteria. Furthermore, P aeruginosa in vitro induced the expression of the PAI-1 gene and protein in a TLR4/p38/RhoA/NF-κB (Toll-like receptor 4/p38/RhoA/nuclear factor-κB) manner in lung endothelial and alveolar epithelial cells. However, in vivo disruption of PAI-1 signalling was associated with higher mortality at 24 h (p<0.03) and higher bacterial burden in the lungs secondary to decreased neutrophil migration into the distal airspace in response to P aeruginosa. CONCLUSIONS: The results indicate that PAI-1 is a critical mediator that controls the development of the early lung inflammation that is required for the activation of the later innate immune response necessary for the eradication of P aeruginosa from the distal airspaces of the lung.


Subject(s)
DNA/genetics , Gene Expression Regulation , Plasminogen Activator Inhibitor 1/genetics , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/isolation & purification , Animals , Biomarkers/metabolism , Blotting, Western , Bronchoalveolar Lavage Fluid/chemistry , Cells, Cultured , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Lung/metabolism , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Plasminogen Activator Inhibitor 1/biosynthesis , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Pseudomonas Infections/genetics , Pseudomonas Infections/microbiology , Reverse Transcriptase Polymerase Chain Reaction
5.
Am J Respir Cell Mol Biol ; 45(3): 632-41, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21257925

ABSTRACT

Inhibition of the small GTPase RhoA attenuates the development of pulmonary edema and restores positive alveolar fluid clearance in a murine model of Pseudomonas aeruginosa pneumonia. Activated protein C (aPC) blocks the development of an unfavorably low ratio of small GTPase Rac1/RhoA activity in lung endothelium through endothelial protein C receptor (EPCR)/protease-activated receptor-1 (PAR-1)-dependent signaling mechanisms that include transactivating the sphingosine-1-phosphate (S1P) pathway. However, whether aPC's cytoprotective effects can attenuate the development of pulmonary edema and death associated with P. aeruginosa pneumonia in mice remains unknown. Thus, we determined whether the normalization of a depressed ratio of activated Rac1/RhoA by aPC would attenuate the P. aeruginosa-mediated increase in protein permeability across lung endothelial and alveolar epithelial barriers. Pretreatment with aPC significantly reduced P. aeruginosa-induced increases in paracellular permeability across pulmonary endothelial cell and alveolar epithelial monolayers via an inhibition of RhoA activation and a promotion of Rac1 activation that required the EPCR-PAR-1 and S1P pathways. Furthermore, pretreatment with aPC attenuated the development of pulmonary edema in a murine model of P. aeruginosa pneumonia. Finally, a cytoprotective-selective aPC mutant, aPC-5A, which lacks most of aPC's anticoagulant activity, reproduced the protective effect of wild-type aPC by attenuating the development of pulmonary edema and decreasing mortality in a murine model of P. aeruginosa pneumonia. Taken together, these results demonstrate a critical role for the cytoprotective activities of aPC in attenuating P. aeruginosa-induced lung vascular permeability and mortality, suggesting that cytoprotective-selective aPC-5A with diminished bleeding risks could attenuate the lung damage caused by P. aeruginosa in critically ill patients.


Subject(s)
Lung Injury/microbiology , Lung/microbiology , Protein C/metabolism , Pseudomonas aeruginosa/metabolism , Animals , Cattle , Cell Line , Disease Models, Animal , Epithelial Cells/cytology , Humans , Mice , Pseudomonas Infections/microbiology , Pulmonary Edema/metabolism , Rats , rac1 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
6.
FASEB J ; 23(11): 3829-42, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19596899

ABSTRACT

The mechanisms by which replicating influenza viruses decrease the expression and function of amiloride-sensitive epithelial sodium channels (ENaCs) have not been elucidated. We show that expression of M2, a transmembrane influenza protein, decreases ENaC membrane levels and amiloride-sensitive currents in both Xenopus oocytes, injected with human alpha-, beta-, and gamma-ENaCs, and human airway cells (H441 and A549), which express native ENaCs. Deletion of a 10-aa region within the M2 C terminus prevented 70% of this effect. The M2 ENaC down-regulation occurred at normal pH and was prevented by MG-132, a proteasome and lysosome inhibitor. M2 had no effect on Liddle ENaCs, which have decreased affinity for Nedd4-2. H441 and A549 cells transfected with M2 showed higher levels of reactive oxygen species, as shown by the activation of redox-sensitive dyes. Pretreatment with glutathione ester, which increases intracellular reduced thiol concentrations, or protein kinase C (PKC) inhibitors prevented the deleterious effects of M2 on ENaCs. The data suggest that M2 protein increases steady-state concentrations of reactive oxygen intermediates that simulate PKC and decrease ENaCs by enhancing endocytosis and its subsequent destruction by the proteasome. These novel findings suggest a mechanism for the influenza-induced rhinorrhea and life-threatening alveolar edema in humans.


Subject(s)
Epithelial Sodium Channel Blockers , Reactive Oxygen Species/metabolism , Viral Matrix Proteins/physiology , Amiloride/pharmacology , Animals , Cells, Cultured , Humans , Oocytes/metabolism , Protein Kinase C/metabolism , Transfection , Xenopus laevis
7.
Free Radic Biol Med ; 46(7): 866-75, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19133325

ABSTRACT

In vivo and in vitro studies revealed that nitroalkenes serve as protective mediators in the lung by inducing the cytoprotective enzyme heme oxygenase-1 (HO-1). Nitrolinoleic acid (LNO2) increased HO-1 mRNA, protein, and activity in cultured pulmonary epithelial cells treated with 5 to 50 microM LNO2 and in lungs of rats injected intraperitoneally with 2.6 mg/kg LNO2 twice daily for 20 days. Western blotting revealed that HO-1 protein increased significantly within 4 h of in vitro LNO2 addition and was preceded by an increase in HO-1 mRNA, consistent with transcriptional regulation of HO-1 expression by LNO2. LNO2 also dephosphorylated and activated eukaryotic initiation factor 2alpha, a key translational regulatory protein, indicating that increased translation may also contribute to LNO2-induced increases in HO-1. Exposure of cells to LNO2 activated ERK and JNK, as evidenced by increased phosphorylation. Downstream targets of ERK and JNK, Elk-1 and c-Jun, respectively, were also phosphorylated in response to LNO2 exposure. However, inhibitor studies revealed that only the ERK pathway is necessary for the LNO2-mediated increase in HO-1 mRNA and protein. These data reveal that LNO2 induces pulmonary epithelial HO-1 expression and downstream adaptive responses to inflammation via both transcriptional and translational regulatory mechanisms.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Heme Oxygenase-1/metabolism , Linoleic Acids/pharmacology , Lung/enzymology , Nitro Compounds/pharmacology , Respiratory Mucosa/metabolism , Animals , Cells, Cultured , Cytoprotection/drug effects , Enzyme Activation/drug effects , Enzyme Activation/immunology , Eukaryotic Initiation Factor-2/genetics , Fatty Acids/metabolism , Heme Oxygenase-1/genetics , Humans , Linoleic Acids/administration & dosage , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitro Compounds/administration & dosage , Rats , Rats, Sprague-Dawley , Respiratory Mucosa/pathology , Signal Transduction/drug effects , Signal Transduction/immunology , Transcriptional Activation
8.
Expert Rev Respir Med ; 3(5): 487-496, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-20305724

ABSTRACT

Pulmonary edema occurs when fluid flux into the lung interstitium exceeds its removal, resulting in hypoxemia and even death. Noncardiogenic pulmonary edema (NPE) generally results when microvascular and alveolar permeability to plasma proteins increase, one possible etiology being oxidant injury. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Experimental systems in which either RONS are increased or protective antioxidant mechanisms are decreased result in alterations of epithelial sodium channel activity and support the hypothesis that RONS are important in NPE. Both basic and clinical studies are needed to critically define the RONS-NPE connection and the capacity of antioxidant therapy (either alone or as a supplement to ß-agonists) to improve patient outcome.

9.
Am J Physiol Lung Cell Mol Physiol ; 293(5): L1281-92, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17890327

ABSTRACT

Transforming growth factor (TGF)-beta upregulates plasminogen activator inhibitor type 1 (PAI-1) in a variety of cell types, and PAI-1 is considered to be an essential factor for the development of fibrosis. Our previous studies demonstrated that TGF-beta decreased intracellular glutathione (GSH) content in murine embryonic fibroblasts (NIH/3T3 cells), whereas treatment of the cells with GSH, which restored intracellular GSH concentration, inhibited TGF-beta-induced collagen accumulation by blocking PAI-1 expression and enhancing collagen degradation. In the present study, we demonstrate that GSH blocks TGF-beta-induced PAI-1 promoter activity in NIH/3T3 cells, which is associated with an inhibition of TGF-beta-induced JNK and p38 phosphorylation. Interestingly, although exogenous GSH does not affect phosphorylation and/or nuclear translocation of Smad2/3 and Smad4, it completely eliminates TGF-beta-induced binding of transcription factors to not only AP-1 and SP-1 but also Smad cis elements in the PAI-1 promoter. Decoy oligonucleotides (ODN) studies further demonstrate that AP-1, SP-1, and Smad ODNs abrogate the inhibitory effect of GSH on TGF-beta-induced PAI-1 promoter activity and inhibit TGF-beta-induced expression of endogenous PAI-1. Furthermore, we show that GSH reduces TGF-beta-stimulated reactive oxygen species (ROS) signal. Blocking ROS production with diphenyleneiodonium or scavenging ROS with a superoxide dismutase and catalase mimetic MnTBaP dramatically reduces TGF-beta-induced p38 and JNK phosphorylation as well as PAI-1 gene expression. In composite, these findings suggest that GSH inhibits TGF-beta-stimulated PAI-1 expression in fibroblasts by blocking the JNK/p38 pathway, probably by reducing ROS, which leads to an inhibition of the binding of transcription factors to the AP-1, SP-1, and Smad cis elements in the PAI-1 promoter.


Subject(s)
Glutathione/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Plasminogen Activator Inhibitor 1/genetics , Promoter Regions, Genetic/genetics , Smad Proteins/metabolism , Sp1 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents , Blotting, Northern , Blotting, Western , Cells, Cultured , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , NIH 3T3 Cells , Phosphorylation , Plasminogen Activator Inhibitor 1/biosynthesis , Protein Transport , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Free Radic Res ; 40(8): 865-74, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17015265

ABSTRACT

The role of H2O2 as a second messenger in signal transduction pathways is well established. We show here that the NADPH oxidase-dependent production of O2*(-) and H2O2 or respiratory burst in alveolar macrophages (AM) (NR8383 cells) is required for ADP-stimulated c-Jun phosphorylation and the activation of JNK1/2, MKK4 (but not MKK7) and apoptosis signal-regulating kinase-1 (ASK1). ASK1 binds only to the reduced form of thioredoxin (Trx). ADP induced the dissociation of ASK1/Trx complex and thus resulted in ASK1 activation, as assessed by phosphorylation at Thr845, which was enhanced after treatment with aurothioglucose (ATG), an inhibitor of Trx reductase. While dissociation of the complex implies Trx oxidation, protein electrophoretic mobility shift assay detected oxidation of Trx only after bolus H2O2 but not after ADP stimulation. These results demonstrate that the ADP-stimulated respiratory burst activated the ASK1-MKK4-JNK1/c-Jun signaling pathway in AM and suggest that transient and localized oxidation of Trx by the NADPH oxidase-mediated generation of H2O2 may play a critical role in ASK1 activation and the inflammatory response.


Subject(s)
Adenosine Diphosphate/chemistry , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Macrophages, Alveolar/enzymology , NADPH Oxidases/chemistry , Adenine/chemistry , Adenosine Diphosphate/metabolism , Animals , Cell Line , Enzyme Activation , Inflammation , NADPH Oxidases/metabolism , Phosphorylation , Rats , Signal Transduction , Threonine/chemistry
11.
Proc Natl Acad Sci U S A ; 103(11): 4299-304, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16537525

ABSTRACT

Nitroalkenes are a class of cell signaling mediators generated by NO and fatty acid-dependent redox reactions. Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid (nitrolinoleic acid, LNO(2)) exhibit pluripotent antiinflammatory cell signaling properties. Heme oxygenase 1 (HO-1) is up-regulated as an adaptive response to inflammatory mediators and oxidative stress. LNO(2) (1-10 microM) induced HO-1 mRNA and protein up to 70- and 15-fold, respectively, in human aortic endothelial cells. This induction of HO-1 occurred within clinical LNO(2) concentration ranges, far exceeded responses to equimolar amounts of linoleic acid and oxidized linoleic acid, and rivaled that induced by hemin. Ex vivo incubation of rat aortic segments with 25 microM LNO(2) resulted in a 40-fold induction of HO-1 protein that localized to endothelial and smooth muscle cells. Actinomycin D inhibited LNO(2) induction of HO-1 in human aortic endothelial cells, and LNO(2) activated a 4.5-kb human HO-1 promoter construct, indicating transcriptional regulation of the HO-1 gene. The peroxisome proliferator-activated receptor gamma (PPARgamma) receptor antagonist GW9662 did not inhibit LNO(2)-mediated HO-1 induction, and a methyl ester derivative of LNO(2) with diminished PPARgamma binding capability also induced HO-1, affirming a PPARgamma-independent mechanism. The NO scavengers 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and oxymyoglobin partially reversed induction of HO-1 by LNO(2), revealing that LNO(2) regulates HO-1 expression by predominantly NO-independent mechanisms. In summary, the metabolic and inflammatory signaling actions of nitroalkenes can be transduced by robust HO-1 induction.


Subject(s)
Endothelium, Vascular/metabolism , Fatty Acids/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Linoleic Acids/pharmacology , Nitric Oxide/metabolism , Nitro Compounds/pharmacology , Animals , Endothelium, Vascular/drug effects , Fatty Acids/pharmacology , Gene Expression Regulation/drug effects , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Humans , In Vitro Techniques , Linoleic Acids/metabolism , Nitro Compounds/metabolism , PPAR gamma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
12.
Am J Respir Cell Mol Biol ; 34(2): 174-81, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16195535

ABSTRACT

Gamma-glutamyl transpeptidase (GGT) plays critical roles in glutathione homeostasis and metabolism. Rat GGT is a single-copy gene from which seven types of GGT mRNA with a common protein encoding sequence, but different 5'-untranslated regions, may be transcribed. We previously showed that type V-2 was the predominant form of GGT mRNA in rat L2 epithelial cells, and that it could be induced by 4-hydroxynonenal (HNE) through the electrophile response element (EpRE) located in GGT promoter 5 (GP5). Here, we report transcription factors binding to GP5 EpRE and the involved signaling pathways. Immunodepletion gel shift assays demonstrated that GP5 EpRE bound JunB, c-Jun, FosB, and Fra2 from unstimulated cells, and that after exposure to HNE, EpRE binding complexes contained nuclear factor erythroid 2-related factor (Nrf) 1, Nrf2, JunB, c-Jun, FosB, c-Fos, Fra1, and Fra2. HNE-induced binding of Nrf2 and c-Jun in GP5 EpRE was confirmed by chromatin immunoprecipitation assays. Using reporter assays and specific inhibitors, we found that HNE induction of rat GGT mRNA V-2 was dependent on activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not protein kinase C or phosphatidylinositol 3-kinase. Pretreatment with ERK and p38MAPK inhibitors also blocked HNE-increased EpRE binding. HNE-increased nuclear content of Nrf1, Nrf2, and c-Jun in L2 cells was partially blocked by inhibition of either ERK1/2 or p38MAPK and completely blocked by simultaneous inhibition of both MAPKs. In conclusion, HNE induces GGT mRNA V-2 through altered EpRE transcription factor binding mediated by both ERK and p38MAPK.


Subject(s)
Aldehydes/pharmacology , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , Response Elements , gamma-Glutamyltransferase/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Electrophoretic Mobility Shift Assay/methods , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Flavonoids/pharmacology , Imidazoles/pharmacology , JNK Mitogen-Activated Protein Kinases/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/drug effects , NF-E2-Related Factor 2/drug effects , Nuclear Respiratory Factor 1/drug effects , Nuclear Respiratory Factor 1/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/drug effects , Protein Kinase C/metabolism , Pyridines/pharmacology , Rats , Signal Transduction , Transcription Factors/metabolism , gamma-Glutamyltransferase/drug effects
13.
J Biol Chem ; 280(51): 42464-75, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16227625

ABSTRACT

Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids. Nitrated palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids were detected in concert with their nitrohydroxy derivatives. Two nitroalkene derivatives of the most prevalent fatty acid, oleic acid, were synthesized (9- and 10-nitro-9-cis-octadecenoic acid; OA-NO2), structurally characterized and determined to be identical to OA-NO2 found in plasma, red cells, and urine of healthy humans. These regioisomers of OA-NO2 were quantified in clinical samples using 13C isotope dilution. Plasma free and esterified OA-NO2 concentrations were 619 +/- 52 and 302 +/- 369 nm, respectively, and packed red blood cell free and esterified OA-NO2 was 59 +/- 11 and 155 +/- 65 nm. The OA-NO2 concentration of blood is approximately 50% greater than that of nitrated linoleic acid, with the combined free and esterified blood levels of these two fatty acid derivatives exceeding 1 microm. OA-NO2 is a potent ligand for peroxisome proliferator activated receptors at physiological concentrations. CV-1 cells co-transfected with the luciferase gene under peroxisome proliferator-activated receptor (PPAR) response element regulation, in concert with PPARgamma, PPARalpha, or PPARdelta expression plasmids, showed dose-dependent activation of all PPARs by OA-NO2. PPARgamma showed the greatest response, with significant activation at 100 nm, while PPARalpha and PPARdelta were activated at approximately 300 nm OA-NO2. OA-NO2 also induced PPAR gamma-dependent adipogenesis and deoxyglucose uptake in 3T3-L1 preadipocytes at a potency exceeding nitrolinoleic acid and rivaling synthetic thiazo-lidinediones. These data reveal that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Nitric Oxide/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Signal Transduction , 3T3-L1 Cells , Animals , Fatty Acids, Unsaturated/blood , Fatty Acids, Unsaturated/urine , Humans , Ligands , Mice , Nuclear Magnetic Resonance, Biomolecular , Peroxisome Proliferator-Activated Receptors/genetics , Spectrometry, Mass, Electrospray Ionization , Transfection
14.
Free Radic Biol Med ; 39(3): 355-64, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15993334

ABSTRACT

Heme oxygenase-1 (HO-1) is a key cytoprotective enzyme and an established marker of oxidative stress. Increased HO-1 expression has been found in the resident macrophages in the alveolar spaces of smokers. The lipid peroxidation product 4-hydroxynonenal (HNE) is also increased in the bronchial and alveolar epithelium in response to cigarette smoke. This suggests a link between a chronic environmental stress, HNE formation, and HO-1 induction. HNE is both an agent of oxidative stress in vivo and a potent cell signaling molecule. We hypothesize that HNE acts as an endogenously produced pulmonary signaling molecule that elicits an adaptive response culminating in the induction of HO-1. Here we demonstrate that HNE increases HO-1 mRNA, protein, and activity in pulmonary epithelial cells and identify ERK as a key pathway involved. Treatment with HNE increased ERK phosphorylation, c-Fos protein, JNK phosphorylation, c-Jun phosphorylation, and AP-1 binding. Whereas inhibiting the ERK pathway with the MEK inhibitor PD98059 significantly decreased HNE-mediated ERK phosphorylation, c-Fos protein induction, AP-1 binding, and HO-1 protein induction, inhibition of the ERK pathway had no effect on HNE-induced HO-1 mRNA. This suggests that ERK is involved in the increase in HO-1 through regulation of translation rather than transcription.


Subject(s)
Aldehydes/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Enzyme Activation/drug effects , Epithelium/drug effects , Extracellular Signal-Regulated MAP Kinases/drug effects , Heme Oxygenase (Decyclizing)/drug effects , Animals , Anthracenes/pharmacology , Blotting, Western , Cell Line , Electrophoretic Mobility Shift Assay , Enzyme Activation/physiology , Epithelium/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1 , Lung/cytology , Lung/metabolism , Oxidative Stress , Protein Biosynthesis , RNA, Messenger , Rats , Reverse Transcriptase Polymerase Chain Reaction
15.
Free Radic Biol Med ; 38(5): 547-56, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15683710

ABSTRACT

4-Hydroxynonenal (HNE) is one of the major end-products of lipid peroxidation and is increased in response to cellular stress and in many chronic and/or inflammatory diseases. HNE can in turn function as a potent signaling molecule to induce the expression of many genes including glutamate cysteine ligase (GCL), the rate-limiting enzyme in de novo glutathione (GSH) biosynthesis. GSH, the most abundant nonprotein thiol in the cell, plays a key role in antioxidant defense. HNE exposure causes an initial depletion of GSH due to formation of conjugates with GSH, followed by a marked increase in GSH resulting from the induction of GCL. GCL is a heterodimeric protein with a catalytic (or heavy, GCLC) subunit and a modulatory (or light, GCLM) subunit. HNE-mediated induction of both GCL subunits and mRNAs has been reported in rat and human cells in vitro; however, the mechanisms or the signaling pathways mediating the induction of Gclc and Gclm mRNAs by HNE differ between rat and human cells. Activation of the ERK pathway is involved in GCL regulation in rat cells while both the ERK and the JNK pathways appear to be involved in human cells. Downstream, MAPK activation leads to increased AP-1 binding, which mediates GCL induction. Some studies suggest a role for the EpRE element as well. As the concentrations of HNE used in all of the studies reviewed are comparable to what may be found in vivo, this makes the findings summarized in this review potentially relevant to GCL regulation in human health and disease.


Subject(s)
Aldehydes/pharmacology , Glutamate-Cysteine Ligase/biosynthesis , Animals , Cell Communication , Enzyme Induction , Glutathione/physiology , Humans , Lipid Peroxidation , Promoter Regions, Genetic/physiology , Rats
17.
Arch Biochem Biophys ; 423(1): 116-25, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14871475

ABSTRACT

Glutamate cysteine ligase (GCL), composed of a catalytic (GCLC) and modulatory (GCLM) subunit, catalyzes the first step of glutathione (GSH) biosynthesis. Using 4-hydroxy-2-nonenal (4HNE), 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and tertiary-butylhydroquinone (tBHQ) as models of oxidative stress which are known to work through different mechanisms, we measured changes in cellular GSH, GCL mRNA, and GCL protein. 4HNE and tBHQ treatments increased cellular GSH levels, while DMNQ exposure depleted GSH. Furthermore, changes in the two GCL mRNAs largely paralleled changes in the GCL proteins; however, the magnitudes differed, suggesting some form of translational control. The molar ratio of GCLC:GCLM ranged from 3:1 to 17:1 in control human bronchial epithelial (HBE1) cells and all treatments further increased this ratio. Data from several mouse tissues show molar ratios of GCLC:GCLM that range from 1:1 to 10:1 in support of these findings. These data demonstrate that alterations in cellular GSH are clearly correlated with GCLC to a greater extent than GCLM. Surprisingly, both control HBE1 cells and some mouse tissues have more GCLC than GCLM and GCLM increases to a much lesser extent than GCLC, suggesting that the regulatory role of GCLM is minimal under physiologically relevant conditions of oxidative stress.


Subject(s)
Glutamate-Cysteine Ligase/metabolism , Glutathione/biosynthesis , Oxidative Stress/physiology , Aldehydes/pharmacology , Antioxidants/pharmacology , Bronchi/drug effects , Bronchi/enzymology , Bronchi/metabolism , Epithelium/drug effects , Epithelium/enzymology , Epithelium/metabolism , Glutamate-Cysteine Ligase/drug effects , Glutathione/drug effects , Humans , Hydroquinones/pharmacology , Naphthoquinones/pharmacology , Oxidative Stress/drug effects
18.
Mol Aspects Med ; 24(4-5): 189-94, 2003.
Article in English | MEDLINE | ID: mdl-12892996

ABSTRACT

The oxidation of polyunsaturated fatty acids results in the production of HNE, which can react through both non-enzymatic and enzyme catalyzed reactions to modify a number of cellular components, including proteins and DNA. Multiple pathways for its enzyme catalyzed elimination include oxidation of the aldehyde to a carboxylic acid, reduction of the aldehyde to an alcohol, and conjugation of the carbon-carbon double bond to glutathione (GSH). Interestingly, the enzymes that result in HNE elimination are induced by HNE itself although the chemical mechanism for signaling is not well understood. One of the striking effects of HNE is that after a transient decrease in GSH, synthesis of GSH is elevated through induction of glutamate cysteine ligase (GCL), which catalyzes the first step in de novo synthesis of GSH. GCL has two subunits, which are transcriptionally regulated by a wide variety of agents, including oxidants and electrophiles, such as HNE, which elevates both. The transcriptional regulation of GCL has been the subject of many investigations yielding a complex picture in which the pathways for up-regulation of the subunits appear to be independent and vary with inducing agent and cell type. We have found that in human bronchial epithelial cells, HNE acts through AP-1 activation with signaling through the JNK pathway, and that neither the ERK nor p38(MAPK) pathways is involved. With these results we review what is currently known about the signaling mechanisms for removal of HNE, focusing principally on conjugation mechanisms involving GSH.


Subject(s)
Aldehydes/metabolism , Drosophila Proteins , Signal Transduction/physiology , Bronchi/metabolism , Epithelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Mitogen-Activated Protein Kinases/metabolism , Nuclear Proteins/metabolism
19.
Biol Chem ; 384(4): 527-37, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12751783

ABSTRACT

Adaptation to oxidative and nitrosative stress occurs in cells first exposed to a nontoxic stress, resulting in the ability to tolerate a toxic challenge of the same or a related oxidant. Adaptation is observed in a wide variety of cells including endothelial cells on exposure to nitric oxide or oxidized lipids, and lung epithelial cells exposed to air-borne pollutants and toxicants. This acquired characteristic has been related to the regulation of a family of stress responding proteins including those that control the synthesis of the intracellular antioxidant glutathione. The focus of this article, which includes a review of recent results along with new data, is the regulation and signaling of glutathione biosynthesis, especially those relating to adaptive mechanisms. These concepts are illustrated with examples using nitric oxide and oxidized low density lipoprotein mediated adaptation to oxidative stress. These data are discussed in the context of other adaptive mechanisms relating to glutathione synthesis including those from dietary constituents such as curcumin.


Subject(s)
Glutathione/biosynthesis , Oxidative Stress/physiology , Adaptation, Physiological , Animals , Cell Physiological Phenomena , Cell Survival/physiology , Environment , Humans , Signal Transduction/physiology , Transcription, Genetic
20.
FASEB J ; 17(3): 473-5, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12514113

ABSTRACT

Dietary use of curcumin, the active component of tumeric, one of the most widely used spices, is linked to several beneficial health effects, although the underlying molecular mechanisms remain largely unknown. Correlations have been established between curcumin exposure and increases in enzymes for glutathione synthesis, particularly glutamate-cysteine ligase (GCL), and metabolism as well as glutathione content, suggesting the eliciting of an adaptive response to stress. In this study, using HBE1 cells, we found that the mechanism of curcumin-induced GCL elevation occurred via transcription of the two Gcl genes. Gcl transcription has been shown in several systems to be mediated through binding of transcription factor complexes to TRE and EpRE elements. Studies herein showed that curcumin caused modest but sustained increases in binding of proteins to DNA sequences for both cis elements but, more importantly, altered the compositions and nuclear content of proteins in these complexes. Curcumin exposure increased JunD and c-Jun content in AP-1 complexes and increased JunD while decreasing MafG/MafK in EpRE complexes. Thus, the beneficial effects elicited by curcumin appear to be due to changes in the pool of transcription factors that compose EpRE and AP-1 complexes, affecting gene expression of GCL and other phase II enzymes.


Subject(s)
Curcumin/pharmacology , Glutamate-Cysteine Ligase/genetics , Response Elements , Transcription Factor AP-1/metabolism , Transcriptional Activation , Binding Sites , Cell Nucleus/chemistry , DNA-Binding Proteins/analysis , Gene Expression Regulation , Glutamate-Cysteine Ligase/biosynthesis , Glutathione/biosynthesis , Macromolecular Substances , MafK Transcription Factor , NF-E2-Related Factor 2 , Nuclear Proteins/analysis , Phosphorylation/drug effects , Proto-Oncogene Proteins c-jun/analysis , Proto-Oncogene Proteins c-jun/metabolism , Repressor Proteins/analysis , Trans-Activators/analysis , Transcription Factor AP-1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...