Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Blood Cancer J ; 12(5): 80, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35595730

ABSTRACT

Pirtobrutinib (LOXO-305), a reversible inhibitor of Bruton's tyrosine kinase (BTK), was designed as an alternative strategy to treat ibrutinib-resistant disease that develops due to C481 kinase domain mutations. The clinical activity of pirtobrutinib has been demonstrated in CLL, but the mechanism of action has not been investigated. We evaluated pirtobrutinib in 4 model systems: first, MEC-1, a CLL cell line overexpressing BTKWT, BTKC481S, or BTKC481R; second, murine models driven by MEC-1 overexpressing BTKWT or BTKC481S; third, in vitro incubations of primary CLL cells; and finally, CLL patients during pirtobrutinib therapy (NCT03740529, ClinicalTrials.gov). Pirtobrutinib inhibited BTK activation as well as downstream signaling in MEC-1 isogenic cells overexpressing BTKWT, BTKC481S, or BTKC481R. In mice, overall survival was short due to aggressive disease. Pirtobrutinib treatment for 2 weeks led to reduction of spleen and liver weight in BTKWT and BTKC481S cells, respectively. In vitro incubations of CLL cells harboring wild-type or mutant BTK had inhibition of the BCR pathway with either ibrutinib or pirtobrutinib treatment. Pirtobrutinib therapy resulted in inhibition of BTK phosphorylation and downstream signaling initially in all cases irrespective of their BTK profile, but these effects started to revert in cases with other BCR pathway mutations such as PLCG2 or PLEKHG5. Levels of CCL3 and CCL4 in plasma were marginally higher in patients with mutated BTK; however, there was a bimodal distribution. Both chemokines were decreased at early time points and mimicked BCR pathway protein changes. Collectively, these results demonstrate that pirtobrutinib is an effective BTK inhibitor for CLL harboring wild-type or mutant BTK as observed by changes in CCL3 and CCL4 biomarkers and suggest that alterations in BCR pathway signaling are the mechanism for its clinical effects. Long-term evaluation is needed for BTK gatekeeper residue variation along with pathologic kinase substitution or mutations in other proteins in the BCR pathway.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Agammaglobulinaemia Tyrosine Kinase , Animals , Clinical Studies as Topic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
2.
Front Oncol ; 12: 833714, 2022.
Article in English | MEDLINE | ID: mdl-35273915

ABSTRACT

B-cell receptor (BCR) signaling pathway and Bcl-2 family prosurvival proteins, specifically Bcl-2 and Mcl-1, are functional in the pathobiology of chronic lymphocytic leukemia (CLL). A pivotal and apical molecule in the BCR pathway is Bruton's tyrosine kinase (BTK). Together, BTK, Bcl-2, and Mcl-1 participate in the maintenance, migration, proliferation, and survival of CLL cells. Several ongoing and published clinical trials in CLL reported high rates of remission, namely, undetectable measurable residual disease (u-MRD) status with combined BTK inhibitor ibrutinib and Bcl-2 antagonist, venetoclax. While the majority of patients achieve complete remission with undetectable-measurable residual disease, at least one third of patients do not achieve this milestone. We hypothesized that cells persistent during ibrutinib and venetoclax therapy may be sensitive to combined venetoclax and Mcl-1 inhibitor, AMG-176. To test this hypothesis, we took peripheral blood samples at baseline, after Cycle 1 and Cycle 3 of ibrutinib monotherapy, after one week and 1 cycle of ibrutinib plus venetoclax therapy. These serial samples were tested for pharmacodynamic changes and treated in vitro with AMG-176 or in combination with venetoclax. Compared to C1D1 cells, residual cells during ibrutinib and venetoclax treatment were inherently resistant to endogenous cell death. Single agent exposure induced some apoptosis but combination of 100 nM venetoclax and 100 or 300 nM of AMG-176 resulted in 40-100% cell death in baseline samples. Cells obtained after four cycles of ibrutinib and one cycle of venetoclax, when treated with such concentration of venetoclax and AMG-176, showed 10-80% cell death. BCR signaling pathway, measured as autophosphorylation of BTK was inhibited throughout therapy in all post-therapy samples. Among four anti-apoptotic proteins, Mcl-1 and Bfl-1 decreased during therapy in most samples. Proapoptotic proteins decreased during therapy. Collectively, these data provide a rationale to test Mcl-1 antagonists alone or in combination in CLL during treatment with ibrutinib and venetoclax.

3.
Cancer Drug Resist ; 4(4): 888-902, 2021.
Article in English | MEDLINE | ID: mdl-34888496

ABSTRACT

AIM: Multiple myeloma (MM) is a hematological malignancy of antibody-producing mature B cells or plasma cells. The proteasome inhibitor, bortezomib, was the first-in-class compound to be FDA approved for MM and is frequently utilized in induction therapy. However, bortezomib refractory disease is a major clinical concern, and the efficacy of the pan-histone deacetylase inhibitor (HDACi), panobinostat, in bortezomib refractory disease indicates that HDAC targeting is a viable strategy. Here, we utilized isogenic bortezomib resistant models to profile HDAC expression and define baseline and HDACi-induced expression patterns of individual HDAC family members in sensitive vs. resistant cells to better understanding the potential for targeting these enzymes. METHODS: Gene expression of HDAC family members in two sets of isogenic bortezomib sensitive or resistant myeloma cell lines was examined. These cell lines were subsequently treated with HDAC inhibitors: panobinostat or vorinostat, and HDAC expression was evaluated. CRISPR/Cas9 knockdown and pharmacological inhibition of specific HDAC family members were conducted. RESULTS: Interestingly, HDAC6 and HDAC7 were significantly upregulated and downregulated, respectively, in bortezomib-resistant cells. Panobinostat was effective at inducing cell death in these lines and modulated HDAC expression in cell lines and patient samples. Knockdown of HDAC7 inhibited cell growth while pharmacologically inhibiting HDAC6 augmented cell death by panobinostat. CONCLUSION: Our data revealed heterogeneous expression of individual HDACs in bortezomib sensitive vs. resistant isogenic cell lines and patient samples treated with panobinostat. Cumulatively our findings highlight distinct roles for HDAC6 and HDAC7 in regulating cell death in the context of bortezomib resistance.

4.
Blood Adv ; 5(16): 3134-3146, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34424317

ABSTRACT

Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton's tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal-related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2-/-γc-/- mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non-BTK-targeted therapeutics.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology
5.
Breast Cancer Res Treat ; 189(2): 333-345, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34241740

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to improving patient outcomes. Developing targeted gene therapy is thus a high priority for TNBC patients. PEA15 (phosphoprotein enriched in astrocytes, 15 kDa) is known to bind to ERK, preventing ERK from being translocated to the nucleus and hence blocking its activity. The biological function of PEA15 is tightly regulated by its phosphorylation at Ser104 and Ser116. However, the function and impact of phosphorylation status of PEA15 in the regulation of TNBC metastasis and in epithelial-to-mesenchymal transition (EMT) are not well understood. METHODS: We established stable cell lines overexpressing nonphosphorylatable (PEA15-AA) and phospho-mimetic (PEA15-DD) mutants. To dissect specific cellular mechanisms regulated by PEA15 phosphorylation status, we performed RT-PCR immune and metastasis arrays. In vivo mouse models were used to determine the effects of PEA15 phosphorylation on tumor growth and metastasis. RESULTS: We found that the nonphosphorylatable mutant PEA15-AA prevented formation of mammospheres and expression of EMT markers in vitro and decreased tumor growth and lung metastasis in in vivo experiments when compared to control, PEA15-WT and phosphomimetic PEA15-DD. However, phosphomimetic mutant PEA15-DD promoted migration, mesenchymal marker expression, tumorigenesis, and lung metastasis in the mouse model. PEA15-AA-mediated inhibition of breast cancer cell migratory capacity and tumorigenesis was the partial result of decreased expression of interleukin-8 (IL-8). Further, we identified that expression of IL-8 was possibly mediated through one of the ERK downstream molecules, Ets-1. CONCLUSIONS: Our results show that PEA15 phosphorylation status serves as an important regulator for PEA15's dual role as an oncogene or tumor suppressor and support the potential of PEA15-AA as a therapeutic strategy for treatment of TNBC.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Epithelial-Mesenchymal Transition , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Interleukin-8 , Mice , Triple Negative Breast Neoplasms/genetics
7.
Cancer ; 126(15): 3579-3592, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32484926

ABSTRACT

BACKGROUND: Poor outcomes for patients with ovarian cancer relate to dormant, drug-resistant cancer cells that survive after primary surgery and chemotherapy. Ovarian cancer (OvCa) cells persist in poorly vascularized scars on the peritoneal surface and depend on autophagy to survive nutrient deprivation. The authors have sought drugs that target autophagic cancer cells selectively to eliminate residual disease. METHODS: By using unbiased small-interfering RNA (siRNA) screens, the authors observed that knockdown of anaplastic lymphoma kinase (ALK) reduced the survival of autophagic OvCa cells. Small-molecule ALK inhibitors were evaluated for their selective toxicity against autophagic OvCa cell lines and xenografts. Autophagy was induced by reexpression of GTP-binding protein Di-Ras3 (DIRAS3) or serum starvation and was evaluated with Western blot analysis, fluorescence imaging, and transmission electron microscopy. Signaling pathways required for crizotinib-induced apoptosis of autophagic cells were explored with flow cytometric analysis, Western blot analysis, short-hairpin RNA knockdown of autophagic proteins, and small-molecule inhibitors of STAT3 and BCL-2. RESULTS: Induction of autophagy by reexpression of DIRAS3 or serum starvation in multiple OvCa cell lines significantly reduced the 50% inhibitory concentration of crizotinib and other ALK inhibitors. In 2 human OvCa xenograft models, the DIRAS3-expressing tumors treated with crizotinib had significantly decreased tumor burden and long-term survival in 67% to 79% of mice. Crizotinib treatment of autophagic cancer cells further enhanced autophagy and induced autophagy-mediated apoptosis by decreasing phosphorylated STAT3 and BCL-2 signaling. CONCLUSIONS: Crizotinib may eliminate dormant, autophagic, drug-resistant OvCa cells that remain after conventional cytoreductive surgery and combination chemotherapy. A clinical trial of ALK inhibitors as maintenance therapy after second-look operations should be seriously considered.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Ovarian Neoplasms/drug therapy , STAT3 Transcription Factor/genetics , rho GTP-Binding Proteins/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Animals , Autophagy/drug effects , Cell Line, Tumor , Cell Lineage/genetics , Cell Survival/genetics , Crizotinib/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects
8.
Clin Cancer Res ; 26(14): 3856-3867, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31937611

ABSTRACT

PURPOSE: Survival of CLL cells due to the presence of Bcl-2 and Mcl-1 has been established. Direct inhibition of Bcl-2 by venetoclax and indirect targeting of Mcl-1 with transcription inhibitors have been successful approaches for CLL. AMG-176 is a selective and direct antagonist of Mcl-1, which has shown efficacy in several hematologic malignancies; however, its effect on CLL is elusive. We evaluated biological and molecular effects of AMG-176 in primary CLL cells. EXPERIMENTAL DESIGN: Using samples from patients (n = 74) with CLL, we tested effects of AMG-176 on CLL and normal hematopoietic cell death and compared importance of CLL prognostic factors on this biological activity. We evaluated CLL cell apoptosis in the presence of stromal cells and identified cell death pathway including stabilization of Mcl-1 protein. Finally, we tested a couplet of AMG-176 and venetoclax in CLL lymphocytes. RESULTS: AMG-176 incubations resulted in time- and dose-dependent CLL cell death. At 100 and 300 nmol/L, there was 30% and 45% cell death at 24 hours. These concentrations did not result in significant cell death in normal hematopoietic cells. Presence of stroma did not affect AMG-176-induced CLL cell death. IGHV unmutated status, high ß2M and Mcl-1 protein levels resulted in slightly lower cell death. Mcl-1, but not Bcl-2 protein levels, in CLL cells increased with AMG-176. Low concentrations of venetoclax (1-30 nmol/L) were additive or synergistic with AMG-176. CONCLUSIONS: AMG-176 is active in inducing CLL cell death while sparing normal blood cells. Combination with low-dose venetoclax was additive or synergistic.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Naphthalenes/pharmacology , Spiro Compounds/pharmacology , Adult , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukocytes, Mononuclear , Male , Middle Aged , Naphthalenes/therapeutic use , Primary Cell Culture , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Spiro Compounds/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
9.
Clin Cancer Res ; 25(18): 5702-5716, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31391192

ABSTRACT

PURPOSE: Paclitaxel is an integral component of primary therapy for breast and epithelial ovarian cancers, but less than half of these cancers respond to the drug. Enhancing the response to primary therapy with paclitaxel could improve outcomes for women with both diseases.Experimental Design: Twelve kinases that regulate metabolism were depleted in multiple ovarian and breast cancer cell lines to determine whether they regulate sensitivity to paclitaxel in Sulforhodamine B assays. The effects of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2) depletion on cell metabolomics, extracellular acidification rate, nicotinamide adenine dinucleotide phosphate, reactive oxygen species (ROS), and apoptosis were studied in multiple ovarian and breast cancer cell lines. Four breast and ovarian human xenografts and a breast cancer patient-derived xenograft (PDX) were used to examine the knockdown effect of PFKFB2 on tumor cell growth in vivo. RESULTS: Knockdown of PFKFB2 inhibited clonogenic growth and enhanced paclitaxel sensitivity in ovarian and breast cancer cell lines with wild-type TP53 (wtTP53). Silencing PFKFB2 significantly inhibited tumor growth and enhanced paclitaxel sensitivity in four xenografts derived from two ovarian and two breast cancer cell lines, and prolonged survival in a triple-negative breast cancer PDX. Transfection of siPFKFB2 increased the glycolysis rate, but decreased the flow of intermediates through the pentose-phosphate pathway in cancer cells with wtTP53, decreasing NADPH. ROS accumulated after PFKFB2 knockdown, which stimulated Jun N-terminal kinase and p53 phosphorylation, and induced apoptosis that depended upon upregulation of p21 and Puma. CONCLUSIONS: PFKFB2 is a novel target whose inhibition can enhance the effect of paclitaxel-based primary chemotherapy upon ovarian and breast cancers retaining wtTP53.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Phosphofructokinase-2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Gene Expression , Gene Silencing , Humans , Immunohistochemistry , Metabolic Networks and Pathways , Mice , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Oxidative Stress , Phosphofructokinase-2/genetics , RNA Interference , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
10.
Clin Cancer Res ; 24(20): 5072-5084, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30084832

ABSTRACT

Purpose: Most patients with ovarian cancer receive paclitaxel chemotherapy, but less than half respond. Pre-treatment microtubule stability correlates with paclitaxel response in ovarian cancer cell lines. Microtubule stability can be increased by depletion of individual kinases. As microtubule stability can be regulated by phosphorylation of microtubule-associated proteins (MAPs), we reasoned that depletion of pairs of kinases that regulate phosphorylation of MAPs could induce microtubule stabilization and paclitaxel sensitization.Experimental Design: Fourteen kinases known to regulate paclitaxel sensitivity were depleted individually in 12 well-characterized ovarian cancer cell lines before measuring proliferation in the presence or absence of paclitaxel. Similar studies were performed by depleting all possible pairs of kinases in six ovarian cancer cell lines. Pairs that enhanced paclitaxel sensitivity across multiple cell lines were studied in depth in cell culture and in two xenograft models.Results: Transfection of siRNA against 10 of the 14 kinases enhanced paclitaxel sensitivity in at least six of 12 cell lines. Dual knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity more than silencing single kinases. Sequential knockdown was superior to concurrent knockdown. Dual silencing of IKBKB/STK39 or EDN2/TBK1 stabilized microtubules by inhibiting phosphorylation of p38 and MAP4, inducing apoptosis and blocking cell cycle more effectively than silencing individual kinases. Knockdown of IKBKB/STK39 or EDN2/TBK1 enhanced paclitaxel sensitivity in two ovarian xenograft models.Conclusions: Sequential knockdown of dual kinases increased microtubule stability by decreasing p38-mediated phosphorylation of MAP4 and enhanced response to paclitaxel in ovarian cancer cell lines and xenografts, suggesting a strategy to improve primary therapy. Clin Cancer Res; 24(20); 5072-84. ©2018 AACR.


Subject(s)
Drug Resistance, Neoplasm/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Protein Kinases/genetics , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Biomarkers , Cell Cycle/genetics , Cell Line, Tumor , Disease Models, Animal , Female , Gene Knockdown Techniques , Genes, BRCA1 , Genes, BRCA2 , Genes, p53 , Humans , Mice , Mutation , Ovarian Neoplasms/drug therapy , Phosphorylation , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/metabolism
11.
PLoS One ; 13(5): e0195932, 2018.
Article in English | MEDLINE | ID: mdl-29768500

ABSTRACT

Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented. Although the current multimodality treatment regime of anthracycline- and taxane-based neoadjuvant therapy, surgery, and radiotherapy has improved the outcome of patients with triple-negative IBC, overall survival continues to be worse than in patients with non-inflammatory locally advanced breast cancer. Translation of new therapies into the clinics to successfully treat IBC has been poor, in part because of the lack of in vitro preclinical models that can accurately predict the response of the original tumor to therapy. We report the generation of a preclinical IBC patient-derived xenograft (PDX)-derived ex vivo (PDXEx) model and show that it closely replicates the tissue architecture of the original PDX tumor harvested from mice. The gene expression profile of our IBC PDXEx model had a high degree of correlation to that of the original tumor. This suggests that the process of generating the PDXEx model did not significantly alter the molecular signature of the original tumor. We demonstrate a high degree of similarity in drug response profile between a PDX mouse model and our PDXEx model generated from the same original PDX tumor tissue and treated with the same panel of drugs, indicating that our PDXEx model had high predictive value in identifying effective tumor-specific therapies. Finally, we used our PDXEx model as a platform for a robotic-based high-throughput drug screen of a 386-drug anti-cancer compound library. The top candidates identified from this drug screen all demonstrated greater therapeutic efficacy than the standard-of-care drugs used in the clinic to treat triple-negative IBC, doxorubicin and paclitaxel. Our PDXEx model is simple, and we are confident that it can be incorporated into a PDX mouse system for use as a first-pass screening platform. This will permit the identification of effective tumor-specific therapies with high predictive value in a resource-, time-, and cost-efficient manner.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Inflammatory Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Female , Gene Expression Profiling , Humans , Inflammatory Breast Neoplasms/drug therapy , Inflammatory Breast Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured
12.
J Cell Biol ; 216(10): 3249-3262, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28883040

ABSTRACT

Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors.


Subject(s)
Genome-Wide Association Study , Membrane Proteins , RNA, Small Interfering , RNA-Binding Proteins , Shiga Toxin 2/metabolism , Endosomes/genetics , Endosomes/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , HeLa Cells , Humans , Lysosomes/genetics , Lysosomes/metabolism , Membrane Proteins/genetics , Protein Transport/genetics , Proteolysis , RNA-Binding Proteins/genetics , Shiga Toxin 1/genetics , Shiga Toxin 1/metabolism , Shiga Toxin 2/genetics
13.
Methods Mol Biol ; 1470: 121-35, 2016.
Article in English | MEDLINE | ID: mdl-27581289

ABSTRACT

The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens.


Subject(s)
Cell Culture Techniques/methods , High-Throughput Screening Assays/methods , RNA Interference , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Dose-Response Relationship, Drug , High-Throughput Screening Assays/instrumentation , Humans , Image Processing, Computer-Assisted/methods , Spheroids, Cellular , Transfection/methods
14.
Adv Drug Deliv Rev ; 79-80: 155-71, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25109853

ABSTRACT

Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests that more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing's sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and the extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine.


Subject(s)
Bone Neoplasms/pathology , Sarcoma, Ewing/pathology , Tissue Engineering , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Child , Drug Evaluation, Preclinical/methods , Drug Resistance, Neoplasm , Extracellular Matrix/metabolism , Humans , Models, Biological , Precision Medicine , Sarcoma, Ewing/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...