Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(6): e27398, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496891

ABSTRACT

Background: Convolutional neural networks (CNNs) assume pivotal roles in aiding clinicians in diagnosis and treatment decisions. The rapid evolution of imaging technology has established three-dimensional (3D) CNNs as a formidable framework for delineating organs and anomalies in medical images. The prominence of 3D CNN frameworks is steadily growing within medical image segmentation and classification. Thus, our proposition entails a comprehensive review, encapsulating diverse 3D CNN algorithms for the segmentation of medical image anomalies and organs. Methods: This study systematically presents an exhaustive review of recent 3D CNN methodologies. Rigorous screening of abstracts and titles were carried out to establish their relevance. Research papers disseminated across academic repositories were meticulously chosen, analyzed, and appraised against specific criteria. Insights into the realm of anomalies and organ segmentation were derived, encompassing details such as network architecture and achieved accuracies. Results: This paper offers an all-encompassing analysis, unveiling the prevailing trends in 3D CNN segmentation. In-depth elucidations encompass essential insights, constraints, observations, and avenues for future exploration. A discerning examination indicates the preponderance of the encoder-decoder network in segmentation tasks. The encoder-decoder framework affords a coherent methodology for the segmentation of medical images. Conclusion: The findings of this study are poised to find application in clinical diagnosis and therapeutic interventions. Despite inherent limitations, CNN algorithms showcase commendable accuracy levels, solidifying their potential in medical image segmentation and classification endeavors.

2.
Article in English | MEDLINE | ID: mdl-37260834

ABSTRACT

Recently, deep learning networks have achieved considerable success in segmenting organs in medical images. Several methods have used volumetric information with deep networks to achieve segmentation accuracy. However, these networks suffer from interference, risk of overfitting, and low accuracy as a result of artifacts, in the case of very challenging objects like the brachial plexuses. In this paper, to address these issues, we synergize the strengths of high-level human knowledge (i.e., natural intelligence (NI)) with deep learning (i.e., artificial intelligence (AI)) for recognition and delineation of the thoracic brachial plexuses (BPs) in computed tomography (CT) images. We formulate an anatomy-guided deep learning hybrid intelligence approach for segmenting thoracic right and left brachial plexuses consisting of 2 key stages. In the first stage (AAR-R), objects are recognized based on a previously created fuzzy anatomy model of the body region with its key organs relevant for the task at hand wherein high-level human anatomic knowledge is precisely codified. The second stage (DL-D) uses information from AAR-R to limit the search region to just where each object is most likely to reside and performs encoder-decoder delineation in slices. The proposed method is tested on a dataset that consists of 125 images of the thorax acquired for radiation therapy planning of tumors in the thorax and achieves a Dice coefficient of 0.659.

3.
J Ultrasound ; 24(4): 367-382, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33428123

ABSTRACT

PURPOSE: Breast ultrasound (BUS) is one of the imaging modalities for the diagnosis and treatment of breast cancer. However, the segmentation and classification of BUS images is a challenging task. In recent years, several methods for segmenting and classifying BUS images have been studied. These methods use BUS datasets for evaluation. In addition, semantic segmentation algorithms have gained prominence for segmenting medical images. METHODS: In this paper, we examined different methods for segmenting and classifying BUS images. Popular datasets used to evaluate BUS images and semantic segmentation algorithms were examined. Several segmentation and classification papers were selected for analysis and review. Both conventional and semantic methods for BUS segmentation were reviewed. RESULTS: Commonly used methods for BUS segmentation were depicted in a graphical representation, while other conventional methods for segmentation were equally elucidated. CONCLUSIONS: We presented a review of the segmentation and classification methods for tumours detected in BUS images. This review paper selected old and recent studies on segmenting and classifying tumours in BUS images.


Subject(s)
Breast Neoplasms , Ultrasonography, Mammary , Algorithms , Breast Neoplasms/diagnostic imaging , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...