Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 164: 3523-3534, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32890561

ABSTRACT

In this study, we aimed to obtain stable Kappa carrageenan (κCar) hydrogel that could be used as a bioink for cartilage regeneration. For this purpose, we described an effective and considerably faster methacrylation process by using microwave energy. Thus, microwave-methacrylated κCar (Mw-κCar-MA) with ≥85% degree of methacrylation (DM) was synthesized despite the use of a low concentration of methacrylic anhydride (MA) at 1000 W in 5 min. Then, Mw-κCar-MA was photo-crosslinked by only using UV irradiation for 40 s. Characterization studies proved that Mw-κCar-MA hydrogels were stronger and have lower weight loss (~20% at 30 days) than that of conventionally synthesized κCar-MA hydrogels. Viscosities of the Mw-κCar-MA hydrogels were found to be sufficient to use in 3D bioprinters. Furthermore, Mw-κCar-MA hydrogels enhanced the viability, proliferation, and GAG deposition of ATDC5 chondrogenic cells. Therefore, we proposed that Mw-κCar-MA can be considered as a suitable bioink for cartilage tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Carrageenan/chemistry , Microwaves , Cartilage , Cell Culture Techniques , Cell Line , Cell Survival , Chemical Phenomena , Chemistry Techniques, Synthetic , Chondrogenesis , Collagen/metabolism , Humans , Hydrogels/chemistry , Immunohistochemistry , Materials Testing , Polymers , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...