Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(5): 1929-1943, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35048940

ABSTRACT

Synthesizing atomically thin, crystalline two-dimensional (2D) molecular materials which combine carbon with other elements is an emerging field requiring both custom-designed molecular precursors and their ability to organize into networks (hydrogen-bonded or covalent). Hybrid carbon-boron nitride (C-BN) networks face the additional challenge of needing hydrolytically-stable BN-containing molecular precursors. Here, we show that borazatruxenes (truxene-like molecules with a borazine core) and their halogenated derivatives are highly stable precursors suitable for on-surface assembly. Using scanning tunneling microscopy (STM) and density functional theory (DFT) simulations we demonstrate hierarchical H-bonded assembly based on chiral homodimers of tribromo-borazatruxenes (3Br-borazatruxenes) as building blocks for both 1D chains and 2D networks. A low-symmetry, H-bonded chiral 2D lattice forms on Au(111) from the C3-symmetric 3Br-borazatruxenes, leading to large enantiomorphic domains that are molecularly homochiral. Such homochiral segregation is a necessary condition if chiral C-BN covalent networks are to be obtained via subsequent on-surface reactions. We show via DFT that up to two Na atoms can be trapped within the small pores of this dense lattice, while further Na atoms can adsorb on preferred network sites; this leads to hybrid Na-molecular network electronic bands with anisotropic dispersion and significant (up to hundreds of meV) bandwidths, as well as significant doping, that can engender anisotropic transport through the network. Finally, electronic structure comparisons (combining both experiment and computation) between borazatruxene, its tri-brominated derivative and truxene show that the borazine core controls the band gap increase, while also inducing C-B pz-pz electron delocalization that facilitates a continuous electron path across the molecule. Furthermore, as shown by DFT, the borazine core drives inter-layer B-N polar interactions that promote adsorption of BN containing molecules in a staggered configuration, a mechanism to be exploited in layer-by-layer supra-molecular assembly of novel hybrid C-BN materials.

2.
ACS Nano ; 13(4): 3896-3909, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30912636

ABSTRACT

We demonstrate a versatile, catalyst free chemical vapor deposition process on insulating substrates capable of producing in one single stream one-dimensional (1D) WO3- x suboxides leading to a wide range of substrate-supported 2H-WS2 polymorphs: a tunable class of out-of-plane (of the substrate) nanophases, with 1D nanotubes and a pure WS2, two-dimensional (2D) nanomesh (defined as a network of webbed, micron-size, few-layer 2D sheets) at its extremes; and in-plane (parallel to the substrate) mono- and few-layer 2D domains. This entails a two-stage approach in which the 2WO3 + 7S → 2WS2 + 3SO2 reaction is intentionally decoupled. First, various morphologies of nanowires or nanorods of high stoichiometry, WO2.92/WO2.9 suboxides (belonging to the class of Magnéli phases) were formed, followed by their sulfurization to undergo reduction to the aforementioned WS2 polymorphs. The continuous transition of WS2 from nanotubes to the out-of-plane 2D nanomesh, via intermediary, mixed 1D-2D phases, delivers tunable functional properties, for example, linear and nonlinear optical properties, such as reflectivity (linked to optical excitations in the material), and second harmonic generation (SHG) and onset of saturable absorption. The SHG effect is very strong across the entire tunable class of WS2 nanomaterials, weakest in nanotubes, and strongest in the 2D nanomesh. Furthermore, a mechanism via suboxide (WO3- x) intermediate as a possible path to 2D domain growth is demonstrated. 2D, in-plane WS2 domains grow via "self-seeding and feeding" where short WO2.92/WO2.9 nanorods provide both the nucleation sites and the precursor feedstock. Understanding the reaction path (here, in the W-O-S space) is an emerging approach toward controlling the nucleation, growth, and morphology of 2D domains and films of transition-metal dichalcogenides.

3.
Nat Nanotechnol ; 13(6): 504-511, 2018 06.
Article in English | MEDLINE | ID: mdl-29632401

ABSTRACT

Currently, there is no available needle-free approach for diabetics to monitor glucose levels in the interstitial fluid. Here, we report a path-selective, non-invasive, transdermal glucose monitoring system based on a miniaturized pixel array platform (realized either by graphene-based thin-film technology, or screen-printing). The system samples glucose from the interstitial fluid via electroosmotic extraction through individual, privileged, follicular pathways in the skin, accessible via the pixels of the array. A proof of principle using mammalian skin ex vivo is demonstrated for specific and 'quantized' glucose extraction/detection via follicular pathways, and across the hypo- to hyper-glycaemic range in humans. Furthermore, the quantification of follicular and non-follicular glucose extraction fluxes is clearly shown. In vivo continuous monitoring of interstitial fluid-borne glucose with the pixel array was able to track blood sugar in healthy human subjects. This approach paves the way to clinically relevant glucose detection in diabetics without the need for invasive, finger-stick blood sampling.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Extracellular Fluid/chemistry , Glucose/analysis , Graphite/chemistry , Skin/chemistry , Animals , Biosensing Techniques/instrumentation , Electroosmosis , Equipment Design , Humans , Swine
4.
ACS Appl Mater Interfaces ; 8(32): 21077-88, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27447357

ABSTRACT

Developing generic strategies for building adaptable or multifunctional bioplatforms is challenging, in particular because protein immobilization onto surfaces often causes loss of protein function and because multifunctionality usually necessitates specific combinations of heterogeneous elements. Here, we introduce a generic, modular bioplatform construction strategy that uses cage-like supramolecular multienzyme complexes as highly adaptable building blocks immobilized directly and noncovalently on graphene. Thermoplasma acidophilum dihydrolipoyl acyltransferase (E2) supramolecular complexes organize as a monolayer or can be controllably transferred onto graphene, preserving their supramolecular form with specific molecular recognition capability and capacity for engineering multifunctionality. This E2-graphene platform can bind enzymes (here, E1, E2's physiological partner) without loss of enzyme function; in this test case, E1 catalytic activity was detected on E2-graphene over 6 orders of magnitude in substrate concentration. The E2-graphene platform can be multiplexed via patterned cotransfer of differently modified E2 complexes. As the E2 complexes are robust and highly customizable, E2-graphene is a platform onto which multiple functionalities can be built.


Subject(s)
Graphite/chemistry , Multienzyme Complexes , Proteins , Thermoplasma
5.
ACS Nano ; 8(11): 11154-64, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25365239

ABSTRACT

Rhenium diselenide (ReSe2) is a layered indirect gap semiconductor for which micromechanical cleavage can produce monolayers consisting of a plane of rhenium atoms with selenium atoms above and below. ReSe2 is unusual among the transition-metal dichalcogenides in having a low symmetry; it is triclinic, with four formula units per unit cell, and has the bulk space group P1̅. Experimental studies of Raman scattering in monolayer, few-layer, and bulk ReSe2 show a rich spectrum consisting of up to 16 of the 18 expected lines with good signal strength, pronounced in-plane anisotropy of the intensities, and no evidence of degradation of the sample during typical measurements. No changes in the frequencies of the Raman bands with layer thickness down to one monolayer are observed, but significant changes in relative intensity of the bands allow the determination of crystal orientation and of monolayer regions. Supporting theory includes calculations of the electronic band structure and Brillouin zone center phonon modes of bulk and monolayer ReSe2 as well as the Raman tensors determining the scattering intensity of each mode. It is found that, as for other transition-metal dichalcogenides, Raman scattering provides a powerful diagnostic tool for studying layer thickness and also layer orientation in few-layer ReSe2.

6.
ACS Nano ; 5(4): 2559-69, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21370812

ABSTRACT

The large variety of hybrid carbon nanotube systems synthesized to date (e.g., by encapsulation, wrapping, or stacking) has provided a body of interactions with which to modify the host nanotubes to produce new functionalities and control their behavior. Each, however, has limitations: hybridization can strongly degrade desirable nanotube properties; noncovalent interactions with molecular systems are generally weak; and interlayer interactions in layered nanotubes are strongly dependent upon the precise stacking sequence. Here we show that the electrostatic/polarization interaction provides a generic route to designing unprecedented, sizable and highly modulated (1 eV range), noncovalent on-tube potentials via encapsulation of inorganic partially ionic phases where charge anisotropy is maximized. Focusing on silver iodide (AgI) nanowires inside single-walled carbon nanotubes, we exploit the polymorphism of AgI, which creates a variety of different charge distributions and, consequently, interactions of varying strength and symmetry. Combined ab initio calculations, high-resolution transmission electron microscopy, and scanning tunneling microscopy and spectroscopy are used to demonstrate symmetry breaking of the nanotube wave functions and novel electronic superstructure formation, which we then correlate with the modulated, noncovalent electrostatic/polarization potentials from the AgI filling. These on-tube potentials are markedly stronger than those due to other noncovalent interactions known in carbon nanotube systems and lead to significant redistribution of the wave function around the nanotube, with implications for conceptually new single-nanotube electronic devices and molecular assembly. Principles derived can translate more broadly to relating graphene systems, for designing/controlling potentials and superstructures.

7.
Nano Lett ; 7(11): 3399-404, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17924698

ABSTRACT

We succeeded in integrating individual, pre-existing nanostructures into functional devices using ultrahigh vacuum dynamic nanostenciling and show working devices based on single-walled carbon nanotubes, a benchmark nanomaterial, and porphyrin J-aggregates, a "soft" supramolecular nanomaterial. Nanostructures are first located via atomic force microscopy, while device elements are added step by step, with an achieved positional accuracy of 20 nm, using a shadow mask assembly that moves while being exposed to evaporated material. Electronic transport, potentiometry, and scanning Kelvin probe were used for control at any fabrication stage and were available in situ. Such complex fabrication/characterization capabilities, applicable repeatedly, reliably, and nondestructively, pave the way for dynamic nanostenciling instrumentation to establish itself as a viable tool for easy integration and prototyping of fragile nanostructures synthesized through a wide range of processes.


Subject(s)
Nanoparticles/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Aluminum Oxide/chemistry , Electric Conductivity , Equipment Design , Microscopy, Atomic Force , Nanotubes, Carbon/chemistry , Porphyrins/chemistry , Potentiometry , Reproducibility of Results , Temperature , Time Factors
8.
Nano Lett ; 5(1): 15-20, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15792405

ABSTRACT

A comprehensive instrument, designed for fabricating nanostructures by evaporation through a dynamic shadow mask in ultrahigh vacuum, is described. The versatility and performance of the instrument is demonstrated through a series of examples, allowing for applications that are impossible to achieve with traditional nanopatterning methods. Clean nanostructures or entire devices made of different materials and on various substrates can be fabricated. The technique is compatible with fundamental surface science and can be easily interfaced with other fabrication and characterization techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...