Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(45): 9452-9465, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34611025

ABSTRACT

Inhibitory synaptic mechanisms oppose epileptic network activity in the brain. The breakdown in this inhibitory restraint and propagation of seizure activity has been linked to the overwhelming of feedforward inhibition, which is provided in large part by parvalbumin-expressing (PV) interneurons in the cortex. The underlying cellular processes therefore represent potential targets for understanding and preventing the propagation of seizure activity. Here we use an optogenetic strategy to test the hypothesis that depolarization block in PV interneurons is a significant factor during the loss of inhibitory restraint. Depolarization block results from the inactivation of voltage-gated sodium channels and leads to impaired action potential firing. We used focal NMDA stimulation to elicit reproducible epileptiform discharges in hippocampal organotypic brain slices from male and female mice and combined this with targeted recordings from defined neuronal populations. Simultaneous patch-clamp recordings from PV interneurons and pyramidal neurons revealed epileptiform activity that was associated with an overwhelming of inhibitory synaptic mechanisms and the emergence of a partial, and then complete, depolarization block in PV interneurons. To counteract this depolarization block, we developed protocols for eliciting pulsed membrane hyperpolarization via the inhibitory opsin, archaerhodopsin. This optical approach was effective in counteracting cumulative inactivation of voltage-gated channels, maintaining PV interneuron action potential firing properties during the inhibitory restraint period, and reducing the probability of initiating epileptiform activity. These experiments support the idea that depolarization block is a point of weakness in feedforward inhibitory synaptic mechanisms and represents a target for preventing the initiation and spread of seizure activity.SIGNIFICANCE STATEMENT GABAA receptor-mediated synaptic transmission opposes seizure activity by establishing an inhibitory restraint against spreading excitation. Parvalbumin-expressing (PV) interneurons contribute significantly to this inhibitory restraint, but it has been suggested that these cells are overwhelmed as they enter a state of "depolarization block." Here we test the importance of this process by devising an optogenetic strategy to selectively relieve depolarization block in PV interneurons. By inducing brief membrane hyperpolarization, we show that it is possible to reduce depolarization block in PV interneurons, maintain their action potential firing in the face of strong excitation, and disrupt epileptiform activity in an in vitro model. This represents a proof of principle that targeting rate-limiting processes can strengthen the inhibitory restraint of epileptiform activity.


Subject(s)
Epilepsy/physiopathology , Hippocampus/physiology , Interneurons/physiology , Neural Inhibition/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Female , Male , Mice , Organ Culture Techniques , Parvalbumins , Pyramidal Cells/physiology
2.
Epilepsia ; 61(10): 2106-2118, 2020 10.
Article in English | MEDLINE | ID: mdl-32797628

ABSTRACT

OBJECTIVE: Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS: We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS: Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm γ-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE: These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Drug Discovery/methods , GABA-A Receptor Agonists/chemistry , GABA-A Receptor Agonists/therapeutic use , Receptors, GABA-A/metabolism , Seizures/drug therapy , Animals , Anticonvulsants/pharmacology , Caenorhabditis elegans , Dose-Response Relationship, Drug , Drug Discovery/trends , Female , GABA-A Receptor Agonists/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Seizures/genetics , Seizures/metabolism , Species Specificity , Thymol/chemistry , Thymol/pharmacology , Thymol/therapeutic use , Zebrafish
3.
Front Cell Neurosci ; 12: 293, 2018.
Article in English | MEDLINE | ID: mdl-30233328

ABSTRACT

Current anti-epileptic medications that boost synaptic inhibition are effective in reducing several types of epileptic seizure activity. Nevertheless, these drugs can generate significant side-effects and even paradoxical responses due to the broad nature of their action. Recently developed chemogenetic techniques provide the opportunity to pharmacologically recruit endogenous inhibitory mechanisms in a selective and circuit-specific manner. Here, we use chemogenetics to assess the potential of suppressing epileptiform activity by enhancing the synaptic output from three major interneuron populations in the rodent hippocampus: parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) expressing interneurons. To target different neuronal populations, promoter-specific cre-recombinase mice were combined with viral-mediated delivery of chemogenetic constructs. Targeted electrophysiological recordings were then conducted in an in vitro model of chronic, drug-resistant epilepsy. In addition, behavioral video-scoring was performed in an in vivo model of acutely triggered seizure activity. Pre-synaptic and post-synaptic whole cell recordings in brain slices revealed that each of the three interneuron types increase their firing rate and synaptic output following chemogenetic activation. However, the interneuron populations exhibited different effects on epileptiform discharges. Recruiting VIP interneurons did not change the total duration of epileptiform discharges. In contrast, recruiting SST or PV interneurons produced robust suppression of epileptiform synchronization. PV interneurons exhibited the strongest effect per cell, eliciting at least a fivefold greater reduction in epileptiform activity than the other cell types. Consistent with this, we found that in vivo chemogenetic recruitment of PV interneurons suppressed convulsive behaviors by more than 80%. Our findings support the idea that selective chemogenetic enhancement of inhibitory synaptic pathways offers potential as an anti-seizure strategy.

4.
Elife ; 3: e01465, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24668166

ABSTRACT

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these 'resting state networks' is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies. DOI: http://dx.doi.org/10.7554/eLife.01465.001.


Subject(s)
Motor Cortex/metabolism , Nerve Net/metabolism , Neural Inhibition , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Adult , Aged , Brain Mapping/methods , Down-Regulation , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Middle Aged , Motor Cortex/cytology , Nerve Net/cytology , Transcranial Direct Current Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...