Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886861

ABSTRACT

Metabolic syndrome (MetSyn) is a major health problem affecting approximately 25% of the worldwide population. Since the gut microbiota is highly connected to the host metabolism, several recent studies have emerged to characterize the role of the microbiome in MetSyn development and progression. To this end, our study aimed to identify the microbiome patterns which distinguish MetSyn from type 2 diabetes mellitus (T2DM). We performed 16S rRNA amplicon sequencing on a cohort of 70 individuals among which 40 were MetSyn patients. The microbiome of MetSyn patients was characterised by reduced diversity, loss of butyrate producers (Subdoligranulum, Butyricicoccus, Faecalibacterium prausnitzii) and enrichment in the relative abundance of fungal populations. We also show a link between the gut microbiome and lipid metabolism in MetSyn. Specifically, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) display a positive effect on gut microbial diversity. When interrogating the signature of gut microbiota in a subgroup of patients harbouring both MetSyn and T2DM conditions, we observed a significant increase in taxa such as Bacteroides, Clostridiales, and Erysipelotrichaceae. This preliminary study shows for the first time that T2DM brings unique signatures of gut microbiota in MetSyn patients. We also highlight the impact of metformin treatment on the gut microbiota. Metformin administration was linked to changes in Prevotellaceae, Rickenellaceae, and Clostridiales. Further research focusing on the microbiome-metabolome patterns is needed to clarify the exact association of various gut microbial communities with the progression of T2DM and the occurrence of various complications in MetSyn patients.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metabolic Syndrome , Metformin , Butyrates/pharmacology , Clostridiales/genetics , Diabetes Mellitus, Type 2/metabolism , Humans , Metformin/pharmacology , Metformin/therapeutic use , RNA, Ribosomal, 16S/genetics
2.
Metabolites ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323661

ABSTRACT

Metabolic syndrome (MetSyn) has a rapidly growing worldwide prevalence, affecting over 1 billion people. MetSyn is clustering many pathological conditions, which, untreated, could increase the risk and often lead to more severe metabolic defects such as type 2 diabetes and non-alcoholic fatty liver disease. Many data demonstrate the complex role of gut microbiota in the host metabolism, and hence, deciphering the microbiome patterns linked to MetSyn could enable us for novel diagnosis and monitoring markers and for better disease management. Moreover, interventions designed to alter patient microbiome composition may help prevent or decrease morbidity linked with MetSyn. However, the microbiome composition is largely different across geographically distinct populations. Our study investigated the microbiota and mycobiome patterns in Romanian metabolic syndrome patients. We also correlated the identified microbiome-mycobiome patterns with levels of metabolites important for host health such as short chain fatty acids, organic acids, and taurine. We found that MetSyn patients are harboring a microbiome enriched in Enterobacteriaceae, Turicibacter sp., Clostridium coccoides, and Clostridium leptum, while beneficial taxa such as Butyricicoccus sp., Akkermansia muciniphila, and Faecalibacterium prausnitzii were decreased. These microbiome changes were correlated with lower butyrate levels and increased succinate. In terms of mycobiome signatures, MetSyn was associated with a high abundance of Saccharomyces and Aspergillus species. Our data are the first reported on a Romanian population and confirming that the pathogenesis of MetSyn is closely related to gut microbiome and homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...