Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med Rep ; 18(1): 864-876, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29767239

ABSTRACT

Cardiac function is reduced following myocardial infarction (MI) due to myocardial injury and alterations in the viable non­ischemic myocardium, a process known as cardiac remodeling. The current treatments available for patients with acute MI (AMI) reduce infarct size, preserve left ventricular (LV) function and improve survival; however, these treatments do not prevent remodeling, which can lead to heart failure. The aim of the present study was to investigate the effects of thyroid hormone (TH) treatment following MI in an in vivo rat model. A total of 199 rats were separated into 3 groups: Sham operated and 2 different coronary artery ligation (CAL) groups. Rats subjected to CAL were randomly divided into a further 2 groups 24 h following surgery. The first group received standard rat chow (designated the CAL group), while the second group received food containing 0.05% thyroid powder (designated the CALTH group). The mean daily intake of TH per rat was estimated at 3.0 µg T3 and 12 µg T4. Echocardiography was used to monitor the rats. Large­scale analysis confirmed the favorable effects of TH treatment following CAL on various parameters of cardiac function. TH treatment reduced LV dilation, and increased global and regional LV function. The development of cardiac hypertrophy was induced and, thus, wall stress was limited. Furthermore, TH treatment improved cardiac geometry, which manifested as an increased sphericity index. Myocardial function, as well as LV dilatation, following CAL and TH treatment was not closely associated with the extent of injury, indicating a novel therapeutic intervention that may alter the course of LV remodeling that typically leads to post­MI heart failure. Data modelling and regressions may be developed to enable the simulation of the pathophysiological processes that occur following MI, and to predict with accuracy the effects of novel or current treatments that act via the modulation of tissue injury, LV dilation, LV geometry and hypertrophy.


Subject(s)
Heart Ventricles/physiopathology , Myocardial Infarction/drug therapy , Thyroid Hormones/pharmacology , Ventricular Function, Left/drug effects , Animals , Disease Models, Animal , Echocardiography , Heart Ventricles/diagnostic imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Rats
2.
J Agric Food Chem ; 63(31): 7066-73, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26160425

ABSTRACT

The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions.


Subject(s)
Anthocyanins/chemistry , Daucus carota/chemistry , Magnetic Resonance Spectroscopy/methods , Plant Extracts/chemistry , Hot Temperature , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...