Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 8(1): 1560808, 2019.
Article in English | MEDLINE | ID: mdl-30719239

ABSTRACT

Extracellular vesicles (EVs) function as important conveyers of information between cells and thus can be exploited as drug delivery systems or disease biomarkers. Transmission electron microscopy (TEM) remains the gold standard method for visualisation of EVs, however the analysis of individual EVs in TEM images is time-consuming if performed manually. Therefore, we present here a software tool for computer-assisted evaluation of EVs in TEM images. TEM ExosomeAnalyzer detects EVs based on their shape and edge contrast criteria and subsequently analyses their size and roundness. The software tool is compatible with common negative staining protocols and isolation methods used in the field of EV research; even with challenging TEM images (EVs both lighter and darker than the background, images containing artefacts or precipitated stain, etc.). If the fully-automatic analysis fails to produce correct results, users can promptly adjust the detected seeds of EVs as well as their boundaries manually. The performance of our tool was evaluated for three different modes with variable levels of human interaction, using two datasets with various heterogeneity. The semi-automatic mode analyses EVs with high success rate in the homogenous dataset (F1 score 0.9094, Jaccard coefficient 0.8218) as well as in the highly heterogeneous dataset containing EVs isolated from cell culture medium and patient samples (F1 score 0.7619, Jaccard coefficient 0.7553). Moreover, the extracted size distribution profiles of EVs isolated from malignant ascites of ovarian cancer patients overlap with those derived by cryo-EM and are comparable to NTA- and TRPS-derived data. In summary, TEM ExosomeAnalyzer is an easy-to-use software tool for evaluation of many types of vesicular microparticles and is available at http://cbia.fi.muni.cz/exosome-analyzer free of charge for non-commercial and research purposes. The web page contains also detailed description how to use the software tool including a video tutorial.

2.
J Colloid Interface Sci ; 537: 20-27, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30415098

ABSTRACT

Palladium and silver nanoparticles (NPs) anchored at the outer surface of ferritin form stable suspension of non-coated particles that possess several catalytic and enzymomimetic activities. These activities are strongly affected by detergents that significantly influence the reaction efficiency and specificity. Reductive dehalogenation of various azo dye substrates shows strong differences in reactivity for each substrate-detergent pair. Reductive dehalogenation is negatively influenced by cationic detergents while catalytic depropargylation is severely impaired by polyethylene oxide containing detergents that is an important finding in respect to potential biorthogonal applications. Moreover, Suzuki-Miyaura reaction is promoted by polyethylene oxide containing detergents but some of them also facilitate dehalogenation. Enzymomimetic peroxidase activity of silver NPs can be detected only in presence of sodium dodecyl sulfate (SDS) while peroxidase activity of palladium NPs is enhanced by SDS and sodium deoxycholate.


Subject(s)
Biomimetics , Detergents/chemistry , Ferritins/metabolism , Metal Nanoparticles/chemistry , Peroxidase/metabolism , Pyrococcus furiosus/metabolism , Silver/metabolism , Catalysis , Ferritins/chemistry , Palladium/chemistry , Palladium/metabolism , Particle Size , Peroxidase/chemistry , Pyrococcus furiosus/chemistry , Silver/chemistry , Surface Properties
3.
J Extracell Vesicles ; 4: 25530, 2015.
Article in English | MEDLINE | ID: mdl-25833224

ABSTRACT

Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80-200 nm, microvesicles: ~200-1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for routine quantification and characterization of EVs from various sources. Finally, it has the potential to bring a desired level of control into routine experiments and non-specialized labs, thanks to its simple bead-based standardization.

4.
Biotechnol J ; 9(6): 852-60, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24639415

ABSTRACT

Enzymes have a wide range of applications in different industries owing to their high specificity and efficiency. Immobilization is often used to improve biocatalyst properties, operational stability, and reusability. However, changes in the structure of biocatalysts during immobilization and under process conditions are still largely uncertain. Here, three microscopy techniques - bright-field, confocal and electron microscopy - were applied to determine the distribution and structure of an immobilized biocatalyst. Free enzyme (haloalkane dehalogenase), cross-linked enzyme aggregates (CLEAs) and CLEAs entrapped in polyvinyl alcohol lenses (lentikats) were used as model systems. Electron microscopy revealed that sonicated CLEAs underwent morphological changes that strongly correlated with increased catalytic activity compared to less structured, non-treated CLEAs. Confocal microscopy confirmed that loading of the biocatalyst was not the only factor affecting the catalytic activity of the lentikats. Confocal microscopy also showed a significant reduction in the pore size of lentikats exposed to 25% tetrahydrofuran and 50% dioxane. Narrow pores appeared to provide protection to CLEAs from the detrimental action of cosolvents, which significantly correlated with higher activity of CLEAs compared to free enzyme. The results showed that microscopy can provide valuable information about the structure and properties of a biocatalyst during immobilization and under process conditions.


Subject(s)
Hydrolases/chemistry , Hydrolases/metabolism , Microscopy/methods , Schistosoma japonicum/enzymology , Animals , Biocatalysis , Dioxanes/pharmacology , Enzyme Stability , Furans/pharmacology , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Structure-Activity Relationship
5.
J Basic Microbiol ; 52(5): 531-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22144013

ABSTRACT

The yeast strains VKM Y-2977 and VKM Y-2978, derived from the isolate Pa-202, were examined for their physiological properties and mycocin sensitivities and studied by light, phase-contrast, fluorescence, transmission and scanning electron microscopy. The cells of the first strain produced long stalk-like conidiophores, whereas the cells of the second one had the appearance of a typical budding yeast under the light microscope. Transmission and scanning electron microscopy showed the formation of stalk-like conidiophores and long necks in VKM Y-2977, similar in appearance to Fellomyces fuzhouensis. The actin cytoskeleton, microtubules and nuclei were similar as well, but due to presence of a capsule, they were not clearly visible. The second isolate, VKM Y-2978, had very short stalk-like conidiophores, and the neck, microtubules and actin cables were shorter as well. The actin patches, actin cables, and microtubules were similar in VKM Y-2977 and VKM Y-2978 and not clearly visible. The physiological characteristics and mycocin sensitivity patterns, together with the microscopic structures and ultrastructures, led us to conclude that both strains belong to Fellomyces penicillatus, even though they differ in the lengths of their stalk-like conidiophores and necks.


Subject(s)
Basidiomycota/growth & development , Basidiomycota/ultrastructure , Actins/ultrastructure , Antifungal Agents/pharmacology , Basidiomycota/classification , Basidiomycota/drug effects , Cell Nucleus/ultrastructure , Cytoplasm/ultrastructure , Microscopy , Microtubules/ultrastructure , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Spores, Fungal/ultrastructure
6.
Chemotherapy ; 56(3): 197-202, 2010.
Article in English | MEDLINE | ID: mdl-20551635

ABSTRACT

BACKGROUND: The aim of this basic study was to investigate by scanning electron microscopy the effects of cytoskeleton inhibitors on conidiogenesis and capsule in the yeast Fellomyces fuzhouensis CBS 8243, related to Cryptococcus neoformans. METHODS: Cells were treated by methyl benzimidazole-2-ylcarbamate (BCM) and latrunculin A (LAT) in yeast extract peptone dextrose medium and examined by scanning electron microscopy. RESULTS: During conidiogenesis, mother cells covered by capsule formed hypha-like stalks and at the hyphal tip yeast-like conidium developed. LAT blocked both stages of conidiogenesis. Inhibited mother cells and conidia became spherical and their capsule disappeared. BCM did not block formation of conidia that were neckless, or affect capsule. Combined application of LAT and BCM blocked both stages of conidiogenesis, cells became spherical and their capsule disappeared. CONCLUSION: Yeast cells with disrupted actin cytoskeleton do not reproduce by conidiogenesis and do not retain inherited cell shape and capsule.


Subject(s)
Basidiomycota/drug effects , Basidiomycota/ultrastructure , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Spores, Fungal/drug effects , Spores, Fungal/ultrastructure , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Shape/drug effects , Microscopy, Electron, Scanning/methods , Thiazolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...