Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38869480

ABSTRACT

While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.


Subject(s)
B7-H1 Antigen , Interferon Type I , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/genetics , Cell Line, Tumor , Glycolysis , Interferon Type I/metabolism , Interferon Type I/immunology , Lactic Acid/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Signal Transduction , Male
3.
Mol Ther Methods Clin Dev ; 31: 101110, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37822719

ABSTRACT

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.

4.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37735876

ABSTRACT

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Subject(s)
Genetic Vectors , Neoplasms , RNA Interference , Genetic Vectors/genetics , Genetic Therapy , Gene Transfer Techniques , Neoplasms/genetics , Neoplasms/therapy
5.
Front Immunol ; 14: 1181014, 2023.
Article in English | MEDLINE | ID: mdl-37153626

ABSTRACT

Background: Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods: To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results: The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions: The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.


Subject(s)
Breast Neoplasms , Rhabdoviridae , Humans , Mice , Animals , Female , Ado-Trastuzumab Emtansine/therapeutic use , Breast Neoplasms/metabolism , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Disease Models, Animal
6.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37242495

ABSTRACT

The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.

7.
Nat Commun ; 14(1): 3035, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37236967

ABSTRACT

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Genetic Vectors/genetics , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Promoter Regions, Genetic/genetics
8.
J Biol Chem ; 299(6): 104749, 2023 06.
Article in English | MEDLINE | ID: mdl-37100284

ABSTRACT

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Subject(s)
Antiviral Agents , COVID-19 , Mpox (monkeypox) , Vaccinia , Animals , Mice , Antiviral Agents/pharmacology , Mpox (monkeypox)/drug therapy , SARS-CoV-2/drug effects , Vaccinia/drug therapy , Vaccinia virus/drug effects
9.
Front Immunol ; 14: 1099459, 2023.
Article in English | MEDLINE | ID: mdl-36969187

ABSTRACT

Introduction: Adipocytes in the tumour microenvironment are highly dynamic cells that have an established role in tumour progression, but their impact on anti-cancer therapy resistance is becoming increasingly difficult to overlook. Methods: We investigated the role of adipose tissue and adipocytes in response to oncolytic virus (OV) therapy in adipose-rich tumours such as breast and ovarian neoplasms. Results: We show that secreted products in adipocyte-conditioned medium significantly impairs productive virus infection and OV-driven cell death. This effect was not due to the direct neutralization of virions or inhibition of OV entry into host cells. Instead, further investigation of adipocyte secreted factors demonstrated that adipocyte-mediated OV resistance is primarily a lipid-driven phenomenon. When lipid moieties are depleted from the adipocyte-conditioned medium, cancer cells are re-sensitized to OV-mediated destruction. We further demonstrated that blocking fatty acid uptake by cancer cells, in a combinatorial strategy with virotherapy, has clinical translational potential to overcome adipocyte-mediated OV resistance. Discussion: Our findings indicate that while adipocyte secreted factors can impede OV infection, the impairment of OV treatment efficacy can be overcome by modulating lipid flux in the tumour milieu.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Ovarian Neoplasms , Humans , Female , Tumor Microenvironment , Culture Media, Conditioned , Oncolytic Viruses/physiology , Ovarian Neoplasms/therapy , Lipids
10.
PLoS Biol ; 21(1): e3001932, 2023 01.
Article in English | MEDLINE | ID: mdl-36603053

ABSTRACT

Use of rigorous study design methods and transparent reporting in publications are 2 key strategies proposed to improve the reproducibility of preclinical research. Despite promotion of these practices by funders and journals, assessments suggest uptake is low in preclinical research. Thirty preclinical scientists were interviewed to better understand barriers and enablers to rigorous design and reporting. The interview guide was informed by the Theoretical Domains Framework, which is a framework used to understand determinants of current and desired behavior. Four global themes were identified; 2 reflecting enablers and 2 reflecting barriers. We found that basic scientists are highly motivated to apply the methods of rigorous design and reporting and perceive a number of benefits to their adoption (e.g., improved quality and reliability). However, there was varied awareness of the guidelines and in implementation of these practices. Researchers also noted that these guidelines can result in disadvantages, such as increased sample sizes, expenses, time, and can require several personnel to operationalize. Most researchers expressed additional resources such as personnel and education/training would better enable the application of some methods. Using existing guidance (Behaviour Change Wheel (BCW); Expert Recommendations for Implementing Change (ERIC) project implementation strategies), we mapped and coded our interview findings to identify potential interventions, policies, and implementation strategies to improve routine use of the guidelines by preclinical scientists. These findings will help inform specific strategies that may guide the development of programs and resources to improve experimental design and transparent reporting in preclinical research.


Subject(s)
Research Design , Reproducibility of Results , Qualitative Research
11.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674550

ABSTRACT

Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.


Subject(s)
Extracellular Vesicles , Virus Diseases , Viruses , Humans , Extracellular Vesicles/metabolism , Virus Diseases/metabolism , Antiviral Agents/metabolism
12.
Methods Mol Biol ; 2614: 139-149, 2023.
Article in English | MEDLINE | ID: mdl-36587124

ABSTRACT

Oncolytic viruses (OVs) rapidly and specifically replicate in and kill tumor cells. OV-targeted infection of malignant cells has the potential to create an "inflammatory storm" that stimulates both innate and adaptive anti-tumor immune responses. The generation of anti-tumor immunity following OV treatment has been shown to be crucial for effective therapy. Therefore, establishing methodologies to measure the generation of anti-tumor T cell responses following OV infection in in vitro assays, which better mimic the complexity of the human tumor microenvironment (TME), will be critical to harness the full potential of OV therapy. Such experimental platforms will accelerate the development of next-generation OVs that are capable of overcoming immunosuppressive networks found within the tumor microenvironment. Here we describe a method that was designed to test the generation and quantification of human tumor-specific T cells following OV infection of 3D tumor spheroids cultured with or without fibroblasts.


Subject(s)
Antineoplastic Agents , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Virus Diseases , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , T-Lymphocytes , Tumor Microenvironment , Virus Diseases/therapy
13.
Front Immunol ; 13: 1029269, 2022.
Article in English | MEDLINE | ID: mdl-36405739

ABSTRACT

Colorectal cancer is the third most diagnosed cancer and the second leading cause of cancer mortality worldwide, highlighting an urgent need for new therapeutic options and combination strategies for patients. The orchestration of potent T cell responses against human cancers is necessary for effective antitumour immunity. However, regression of a limited number of cancers has been induced by immune checkpoint inhibitors, T cell engagers (TCEs) and/or oncolytic viruses. Although one TCE has been FDA-approved for the treatment of hematological malignancies, many challenges exist for the treatment of solid cancers. Here, we show that TCEs targeting CEACAM5 and CD3 stimulate robust activation of CD4 and CD8-positive T cells in in vitro co-culture models with colorectal cancer cells, but in vivo efficacy is hindered by a lack of TCE retention in the tumour microenvironment and short TCE half-life, as demonstrated by HiBiT bioluminescent TCE-tagging technology. To overcome these limitations, we engineered Bispecific Engager Viruses, or BEVirs, a novel tumour-targeted vaccinia virus platform for intra-tumour delivery of these immunomodulatory molecules. We characterized virus-mediated TCE-secretion, TCE specificity and functionality from infected colorectal cancer cells and patient tumour samples, as well as TCE cytotoxicity in spheroid models, in the presence and absence of T cells. Importantly, we show regression of colorectal tumours in both syngeneic and xenograft mouse models. Our data suggest that a different profile of cytokines may contribute to the pro-inflammatory and immune effects driven by T cells in the tumour microenvironment to provide long-lasting immunity and abscopal effects. We establish combination regimens with immune checkpoint inhibitors for aggressive colorectal peritoneal metastases. We also observe a significant reduction in lung metastases of colorectal tumours through intravenous delivery of our oncolytic virus driven T-cell based combination immunotherapy to target colorectal tumours and FAP-positive stromal cells or CTLA4-positive Treg cells in the tumour microenvironment. In summary, we devised a novel combination strategy for the treatment of colorectal cancers using oncolytic vaccinia virus to enhance immune-payload delivery and boost T cell responses within tumours.


Subject(s)
Colorectal Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Mice , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Vaccinia virus , Disease Models, Animal , Colorectal Neoplasms/therapy , Tumor Microenvironment
14.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35526097

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
15.
Nat Commun ; 13(1): 1898, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393414

ABSTRACT

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , MicroRNAs/genetics , Neoplasms/therapy , Oncolytic Viruses/genetics
16.
Mol Ther Oncolytics ; 24: 507-521, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35229029

ABSTRACT

A significant proportion of non-muscle invasive bladder cancer cases will progress to muscle invasive disease. Transurethral resection followed by Bacillus Calmette Guerin immunotherapy can reduce this risk, while cystectomy prior to muscle invasion provides the best option for survival. Currently, there are no effective treatments for Bacillus Calmette Guerin refractory disease. A novel oncolytic vesicular stomatitis virus containing the human GM-CSF transgene (VSVd51-hGM-CSF) was rescued and tested as a potential bladder-sparing therapy for aggressive bladder cancer. The existing variant expressing mouse GM-CSF was also used. Measurement of gene expression and protein level alterations of canonical immunogenic cell death associated events on mouse and human bladder cancer cell lines and spheroids showed enhanced release of danger signals and immunogenic factors following infection with VSVd51-m/hGM-CSF. Intravesical instillation of VSVd51-mGM-CSF into MB49 bladder cancer bearing C57Bl/6 mice demonstrated enhanced activation of peripheral and bladder infiltrating effector immune cells, along with improved survival and reduced tumor volume. Importantly, virus-mediated anti-tumor immunity was recapitulated in bladder cancer patient-derived organoids. These results suggest that VSVd51-hGM-CSF is a promising viro/immunotherapy that could benefit bladder cancer patients.

17.
Mol Ther ; 30(5): 1885-1896, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34687845

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , T-Lymphocytes
18.
Front Immunol ; 13: 1050250, 2022.
Article in English | MEDLINE | ID: mdl-36713447

ABSTRACT

Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome. Herein, we describe a simple, cost-effective approach to rapidly generate and purify a poxvirus vector with multiple transgenes. By utilizing a simple, modular CRISPR/Cas9 assisted-recombinant vaccinia virus engineering (CARVE) system, we demonstrate generation of a recombinant vaccinia virus expressing three distinct transgenes at three different loci in less than 1 week. We apply CARVE to rapidly generate a novel immunogenic vaccinia virus vector, which expresses a bacterial diadenylate cyclase. This novel vector, STINGPOX, produces cyclic di-AMP, a STING agonist, which drives IFN signaling critical to the anti-tumor immune response. We demonstrate that STINGPOX can drive IFN signaling in primary human cancer tissue explants. Using an immunocompetent murine colon cancer model, we demonstrate that intratumoral administration of STINGPOX in combination with checkpoint inhibitor, anti-PD1, promotes survival post-tumour challenge. These data demonstrate the utility of CRISPR/Cas9 in the rapid arming of poxvirus vectors with therapeutic payloads to create novel immunotherapies.


Subject(s)
Neoplasms , Poxviridae , Humans , Animals , Mice , Genetic Vectors/genetics , Vaccinia virus , Poxviridae/genetics , Immunotherapy
19.
J Vis Exp ; (174)2021 08 12.
Article in English | MEDLINE | ID: mdl-34459810

ABSTRACT

The emergence of the COVID-19 pandemic has increased the need for better serological detection methods to determine the epidemiologic impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The increasing number of SARS-CoV-2 infections raises the need for better antibody detection assays. Current antibody detection methods compromise sensitivity for speed or are sensitive but time-consuming. A large proportion of SARS-CoV-2-neutralizing antibodies target the receptor-binding domain (RBD), one of the primary immunogenic compartments of SARS-CoV-2. We have recently designed and developed a highly sensitive, bioluminescent-tagged RBD (NanoLuc HiBiT-RBD) to detect SARS-CoV-2 antibodies. The following text describes the procedure to produce the HiBiT-RBD complex and a fast assay to evaluate the presence of RBD-targeting antibodies using this tool. Due to the durability of the HiBiT-RBD protein product over a wide range of temperatures and the shorter experimental procedure that can be completed within 1 h, the protocol can be considered as a more efficient alternative to detect SARS-CoV-2 antibodies in patient serum samples.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Testing , Humans , Pandemics , Spike Glycoprotein, Coronavirus
20.
Cancers (Basel) ; 13(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34359574

ABSTRACT

Oncolytic viruses (OVs) were originally developed as direct cytotoxic agents but have been increasingly recognised as a form of immunotherapy [...].

SELECTION OF CITATIONS
SEARCH DETAIL
...