Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 16(796): eade8744, 2023 08.
Article in English | MEDLINE | ID: mdl-37527351

ABSTRACT

Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway. In BRAF-driven melanoma cells treated with BRAF inhibitors, subpopulations of cells escape drug-induced quiescence through a nongenetic manner of adaptation and resume slow proliferation. Here, we found that this phenomenon is common to many cancer types driven by EGFR, KRAS, or BRAF mutations in response to multiple, clinically approved MAPK pathway inhibitors. In 2D cultures and 3D spheroid models of various cancer cell lines, a subset of cells escaped drug-induced quiescence within 4 days to resume proliferation. These "escapee" cells exhibited DNA replication deficits, accumulated DNA lesions, and mounted a stress response that depended on the ataxia telangiectasia and RAD3-related (ATR) kinase. We further identified that components of the Fanconi anemia (FA) DNA repair pathway are recruited to sites of mitotic DNA synthesis (MiDAS) in escapee cells, enabling successful completion of cell division. Analysis of patient tumor samples and clinical data correlated disease progression with an increase in DNA replication stress response factors. Our findings suggest that many MAPK pathway-mutant cancers rapidly escape drug action and that suppressing early stress tolerance pathways may achieve more durable clinical responses to MAPK pathway inhibitors.


Subject(s)
Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Cell Line, Tumor , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , DNA Replication , Cell Cycle Proteins/metabolism , Cell Cycle , MAP Kinase Signaling System/genetics , Neoplasms/drug therapy , Neoplasms/genetics
2.
Cell ; 186(12): 2628-2643.e21, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37267950

ABSTRACT

CDK2 is a core cell-cycle kinase that phosphorylates many substrates to drive progression through the cell cycle. CDK2 is hyperactivated in multiple cancers and is therefore an attractive therapeutic target. Here, we use several CDK2 inhibitors in clinical development to interrogate CDK2 substrate phosphorylation, cell-cycle progression, and drug adaptation in preclinical models. Whereas CDK1 is known to compensate for loss of CDK2 in Cdk2-/- mice, this is not true of acute inhibition of CDK2. Upon CDK2 inhibition, cells exhibit a rapid loss of substrate phosphorylation that rebounds within several hours. CDK4/6 activity backstops inhibition of CDK2 and sustains the proliferative program by maintaining Rb1 hyperphosphorylation, active E2F transcription, and cyclin A2 expression, enabling re-activation of CDK2 in the presence of drug. Our results augment our understanding of CDK plasticity and indicate that co-inhibition of CDK2 and CDK4/6 may be required to suppress adaptation to CDK2 inhibitors currently under clinical assessment.


Subject(s)
Cell Cycle Proteins , Cyclin-Dependent Kinases , Animals , Mice , Cyclin-Dependent Kinases/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cell Cycle Proteins/metabolism , Phosphorylation , Cell Division
3.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993538

ABSTRACT

Many cancers harbor pro-proliferative mutations of the mitogen-activated protein kinase (MAPK) pathway and many targeted inhibitors now exist for clinical use, but drug resistance remains a major issue. We recently showed that BRAF-driven melanoma cells treated with BRAF inhibitors can non-genetically adapt to drug within 3-4 days to escape quiescence and resume slow proliferation. Here we show that this phenomenon is not unique to melanomas treated with BRAF inhibitors but rather is widespread across many clinical MAPK inhibitors and cancer types driven by EGFR, KRAS, and BRAF mutations. In all treatment contexts examined, a subset of cells can escape drug-induced quiescence within four days to resume proliferation. These escapee cells broadly experience aberrant DNA replication, accumulate DNA lesions, spend longer in G2-M cell cycle phases, and mount an ATR-dependent stress response. We further identify the Fanconi anemia (FA) DNA repair pathway as critical for successful mitotic completion in escapees. Long-term cultures, patient samples, and clinical data demonstrate a broad dependency on ATR- and FA-mediated stress tolerance. Together, these results highlight the pervasiveness with which MAPK-mutant cancers are able to rapidly escape drug and the importance of suppressing early stress tolerance pathways to potentially achieve more durable clinical responses to targeted MAPK pathway inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...