Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930544

ABSTRACT

Soil bacterial communities play a remarkable role in nutrient cycling, significantly affecting soil organic material content, soil fertility, and, in an indirect way, plant succession processes. Conversely, vegetation type influences microbial soil life. The present study compared the bacterial microbiome composition, diversity and catabolic activity profile of topsoil samples collected under three different forest types (a twice-coppiced black locust stand, a young, naturally reforested, and a middle-aged mixed pedunculate oak stand) planted on former arable land in the early 20th century. Diversity indices determined during 16S ribosomal RNA sequencing-based metagenome analysis indicated that the black locust stand had the highest soil bacterial community diversity. At the phylum level, Acidobacteriota, Actinobacteriota, Proteobacteria, Verrucomicrobiota, Bacteroidota, and Gemmatimonadota were the most abundant taxa in the forest soils. Concerning soil parameters, redundancy analysis revealed that pH had the highest impact on bacterial community structure and pH, and soil organic carbon content on the samples' respiration patterns. As for catabolic activity, the recently clearcut oak forest showed the lowest substrate-induced respiration, and citrate was the main driver for the inter-stand variability of microbial activity. Our results confirm that soil parameters and forest type influence the composition and functioning of the soil bacterial microbiome.

2.
Sci Total Environ ; 873: 162302, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36822430

ABSTRACT

Forest management integrating nature conservation aspects into timber production focuses increasingly on small-scale interventions. However, the ecological consequences of gap cuttings remain ambiguous in oak-dominated forests. In the Pilis Gap Experiment, we analyze how combinations of different gap shapes (circular and elongated), and gap sizes (150 m2 and 300 m2) affect the microclimate and biota of a mature sessile oak-hornbeam forest in Hungary. We first report the changes in direct and diffuse light, soil moisture, daily air and soil temperatures, and relative air humidity in the experimental cuttings in the vegetation season directly following their implementation. Diffuse light had a central maximum and a concentric pattern. Direct light was distributed along a north-south gradient, with maxima in northern gap parts. Soil moisture was determined by gap shape: it increased significantly in the center of circular gaps, with multiple local maxima in the southern-central parts of large circular gaps. Its pattern was negatively related to direct light, and larger spatial variability was present in circular than in elongated gaps. The daily mean air temperatures at 1.3 m increased in all, especially in large gaps. Soil and ground-level temperatures remained largely unchanged, reflecting on light and soil moisture conditions affecting evaporative cooling. Relative humidity remained unaltered. Even though the opening of experimental gaps changed microclimatic conditions immediately, effect sizes remained moderate. Gap size and gap shape were both important determinants of microclimate responses: gap size markedly affected irradiation increase, gap shape determined soil moisture surplus, while soil and air temperatures, and air humidity depended on both components of the gap design. We conclude that 150-300 m2 sized management-created gaps can essentially maintain forest microclimate while theoretically providing enough light for oak regeneration; and that the manipulation of gap shape and gap size within this range are effective tools of adaptive management.

SELECTION OF CITATIONS
SEARCH DETAIL
...