Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(13): 5203-5215, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36962006

ABSTRACT

Air-water interfacial retention of poly- and perfluoroalkyl substances (PFASs) is increasingly recognized as an important environmental process. Herein, column transport experiments were used to measure air-water interfacial partitioning values for several perfluoroalkyl ethers and for PFASs derived from aqueous film-forming foam, while batch experiments were used to determine equilibrium Kia data for compounds exhibiting evidence of rate-limited partitioning. Experimental results suggest a Freundlich isotherm best describes PFAS air-water partitioning at environmentally relevant concentrations (101-106 ng/L). A multiparameter regression analysis for Kia prediction was performed for the 15 PFASs for which equilibrium Kia values were determined, assessing 246 possible combinations of 8 physicochemical and system properties. Quantitative structure-property relationships (QSPRs) based on three to four parameters provided predictions of high accuracy without model overparameterization. Two QSPRs (R2 values of 0.92 and 0.83) were developed using an assumed average Freundlich n value of 0.65 and validated across a range of relevant concentrations for perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and hexafluoropropylene oxide-dimer acid (i.e., GenX). A mass action model was further modified to account for the changing ionic strength on PFAS air-water interfacial sorption. The final result was two distinct QSPRs for estimating PFAS air-water interfacial partitioning across a range of aqueous concentrations and ionic strengths.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Water , Fluorocarbons/analysis , Ethers , Water Pollutants, Chemical/analysis , Osmolar Concentration
2.
J R Soc Interface ; 19(192): 20220276, 2022 07.
Article in English | MEDLINE | ID: mdl-35855594

ABSTRACT

Biogeochemical reactions occurring in soil pore space underpin gaseous emissions measured at macroscopic scales but are difficult to quantify due to their complexity and heterogeneity. We develop a volumetric-average method to calculate aerobic respiration rates analytically from soil with microscopic soil structure represented explicitly. Soil water content in the model is the result of the volumetric-average of the microscopic processes, and it is nonlinearly coupled with temperature and other factors. Since many biogeochemical reactions are driven by oxygen (O2) which must overcome various resistances before reaching reactive microsites from the atmosphere, the volumetric-average results in negative feedback between temperature and soil respiration, with the magnitude of the feedback increasing with soil water content and substrate quality. Comparisons with various experiments show the model reproduces the variation of carbon dioxide emission from soils under different water content and temperature gradients, indicating that it captures the key microscopic processes underpinning soil respiration. We show that alongside thermal microbial adaptation, substrate heterogeneity and microbial turnover and carbon use efficiency, O2 dissolution and diffusion in water associated with soil pore space is another key explanation for the attenuated temperature response of soil respiration and should be considered in developing soil organic carbon models.


Subject(s)
Soil Microbiology , Soil , Carbon , Carbon Dioxide , Oxygen , Respiration , Soil/chemistry , Temperature , Water
3.
Environ Sci Technol ; 56(16): 11343-11353, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35904865

ABSTRACT

In situ chemical oxidation (ISCO) has proven successful in the remediation of aquifers contaminated with dense nonaqueous phase liquids (DNAPLs). However, the treatment efficiency can often be hampered by the formation of solids or gas, reducing the contact between remediation agents and residual DNAPLs. To further improve the efficiency of ISCO, fundamental knowledge is needed about the complex multiphase flow and reactive transport processes as new solid and fluid phases emerge at the microscale. Here, via microfluidic experiments, we study the pore-scale dynamics of trichloroethylene degradation by permanganate. We visualize how the remediation evolves under the influence of solid phase emergence and explore the roles of injection rate, oxidant concentration, and stabilization supplement. Combining image processing, pressure analysis, and stoichiometry calculations, we provide comprehensive descriptions of the oxidant concentration-dependent growth patterns of the solid phase and their impact on the remediation efficiency. We further corroborate the stabilization mechanism provided by phosphate supplement, which is effective in inhibiting solid phase generation and thus highly beneficial for the oxidation remediation. This work elucidates the pore-scale mechanisms during remediation of chlorinated solvents with a particular context in the solid phase production and the associated effects, which is of general significance to understanding various processes in natural and engineered systems involving solid phase emergence or aggregation phenomena, such as groundwater and soil remediation.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Trichloroethylene , Water Pollutants, Chemical , Groundwater/analysis , Oxidants , Oxidation-Reduction , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 56(12): 7963-7975, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35549168

ABSTRACT

Predicting the transport of perfluoroalkyl acids (PFAAs) in the vadose zone is critically important for PFAA site cleanup and risk mitigation. PFAAs exhibit several unusual and poorly understood transport behaviors, including partitioning to the air-water interface, which is currently the subject of debate. This study develops a novel use of quasi-saturated (residual air saturation) column experiments to estimate chemical partitioning parameters of both linear and branched perfluorooctane sulfonate (PFOS) in unsaturated soils. The ratio of linear-to-branched air-water interfacial partitioning constants for all six experiments was 1.62 ± 0.24, indicating significantly greater partitioning of linear PFOS isomers at the air-water interface. Standard breakthrough curve analysis and numerical inversion of HYDRUS models support the application of a Freundlich isotherm for PFOS air-water interfacial partitioning below a critical reference concentration (CRC). Data from this study and previously reported unsaturated column data on perfluorooctanoate (PFOA) were reevaluated to examine unsaturated systems for transport nonidealities. This reanalysis suggests both transport nonidealities and Freundlich isotherm behavior for PFOA below the CRC using drainage-based column methods, contrary to the assertions of the original authors. Finally, a combined Freundlich-Langmuir isotherm was proposed to describe PFAA air-water interfacial partitioning across the full range of relevant PFAA concentrations.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Caprylates/analysis , Fluorocarbons/analysis , Isomerism , Porosity , Water , Water Pollutants, Chemical/analysis
5.
J Contam Hydrol ; 242: 103842, 2021 10.
Article in English | MEDLINE | ID: mdl-34118564

ABSTRACT

The processes impacting solute transport through unsaturated porous media have been receiving renewed attention due to their relevance to the transport of emerging contaminants. A set of well-monitored and highly controlled experiments in sand columns were conducted to determine the effect of partial saturation on conservative solute breakthrough in porous media. The results suggest traditional transport parameter estimation methods inadequately account for the pore-scale processes of mass transfer to the immobile zones and the effects of partial saturation on advective transport, even for conservative tracers. Accurate estimation of these basic transport parameters is critical to evaluate the multi-phase partitioning of nonconservative solutes, as any errors in these parameters would bias the estimates of multi-phase partitioning parameters. Herein, we introduced the Mass Transfer Index (MTI), a semi-empirical approach for quantifying the impact of non-Fickian elements of pore-scale unsaturated solute transport (i.e. immobile water, tortuous flow paths, and non-uniform solute distribution), which become increasingly important as the wetting fluid saturation decreases. Importantly, this MTI was determined independently of chemically driven phase partitioning and is supported by experimental data. Based on this conceptualization, the 1-D equilibrium advection dispersion equation was modified to incorporate the MTI as a lumped parameter which quantifies resistance to (MTI > 1) or promotion of (MTI < 1) of advective solute flux. Analytical solutions to the modified advection-dispersion-reaction equation for pulse and step inputs were developed. Conservative tracer experiments were conducted in variably saturated sand columns to validate both the MTI conceptualization and the inversion method used to estimate the MTI. These experiments involved the use of X-ray absorption spectroscopy integrated with sensor-based measurements of soil moisture, temperature, and electrical conductivity for tracer breakthrough. The mathematical model developed herein adapts traditional macroscopic models of solute transport to account for the non-Fickian pore-scale transport behaviors observed in unsaturated porous media with significant advective flux.


Subject(s)
Groundwater , Water Movements , Models, Theoretical , Porosity , Soil , Solutions
6.
J Contam Hydrol ; 241: 103811, 2021 08.
Article in English | MEDLINE | ID: mdl-33878512

ABSTRACT

The advection-dispersion equation (ADE) often fails to predict solute transport, in part due to incomplete mixing in the subsurface, which the development of non-local models has attempted to deal with. One such model is dual-domain mass transfer (DDMT); one parameter that exists within this model type is called immobile porosity. Here, we explore the complexity of estimating immobile porosity under varying flow rates and density dependencies in a large-scale heterogeneous system. Immobile porosity is estimated experimentally and using numerical models in 3-D flow systems, and is defined by domains of comparatively low advective velocity instead of truly immobile regions at the pore scale. Tracer experiments were conducted in a mesoscale 3-D tank system with embedded large impermeable zones and the generated data were analyzed using a numerical model. The impermeable zones were used to explore how large-scale structure and heterogeneity affect parameter estimation of immobile porosity, assuming a dual-porosity model, and resultant characterization of the aquifer system. Spatially and temporally co-located fluid electrical conductivity (σf) and bulk apparent electrical conductivity (σb)-using geophysical methods-were measured to estimate immobile porosity, and numerical modeling (i.e., SEAWAT and R3t) was conducted to explore controls of the immobile zones on the experimentally observed flow and transport. Results showed that density-dependent flow increased the hysteresis between measured fluid and bulk electrical conductivity, resulting in larger interpreted immobile pore-space estimates. Increasing the dispersivity in the model simulations decreased the estimated immobile porosity; flow rate had no impact. Overall, the results of this study highlight the difficulty faced in determining immobile porosity values in field settings, where hydrogeologic processes may vary temporally. Our results also highlight that immobile porosity is an effective parameter in an upscaled model whose physical meaning is not necessarily clear and that may not align with intuitive interpretations of a porosity.


Subject(s)
Groundwater , Water Movements , Hydrology , Laboratories , Models, Theoretical , Porosity
7.
Proc Natl Acad Sci U S A ; 114(35): 9379-9384, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28807999

ABSTRACT

Plant performance (i.e., fecundity, growth, survival) depends on an individual's access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant-plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel-porous media test facility to simulate the soil-plant-atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant-plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant-plant interactions and community self-organization are important.


Subject(s)
Models, Biological , Plant Physiological Phenomena , Soil/chemistry , Water/chemistry , Demography , Environment, Controlled , Water Movements , Wind
8.
Ground Water ; 53(5): 685-98, 2015.
Article in English | MEDLINE | ID: mdl-25535651

ABSTRACT

The generation of vapor-phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non-aqueous-phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two-dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water-wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water-saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective-dispersive-diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.


Subject(s)
Models, Theoretical , Soil Pollutants/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis , Diffusion , Gases , Porosity , Volatilization , Water Movements
9.
Water Resour Res ; 50(1): 661-680, 2014 Jan.
Article in English | MEDLINE | ID: mdl-25309005

ABSTRACT

In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

10.
J Contam Hydrol ; 157: 11-24, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24269948

ABSTRACT

Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t(2)), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.


Subject(s)
Groundwater , Models, Theoretical , Water Pollutants, Chemical , Porosity
11.
J Contam Hydrol ; 149: 88-99, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23608741

ABSTRACT

Understanding the dissolution behavior of dense non-aqueous phase liquids (DNAPLs) in rock fractures under different entrapment conditions is important for remediation activities and any related predictive modeling. This study investigates DNAPL dissolution in variable aperture fractures under two important entrapment configurations, namely, entrapped residual blobs from gravity fingering and pooling in a dead-end fracture. We performed a physical dissolution experiment of residual DNAPL blobs in a vertical analog fracture using light transmission techniques. A high-resolution mechanistic (physically-based) numerical model has been developed which is shown to excellently reproduce the experimentally observed DNAPL dissolution. We subsequently applied the model to simulate dissolution of the residual blobs under different water flushing velocities. The simulated relationship between the Sherwood number Sh and Peclet number Pe could be well fitted with a simple power-law function (Sh=1.43Pe°·4³). To investigate mass transfer from dead-end pools, another type of trapping in rock fractures, entrapment and dissolution of DNAPL in a vertical dead-end fracture was simulated. As the entrapped pool dissolves, the depth of the interface between the DNAPL and the flowing water increases linearly with decreasing DNAPL saturation. The interfacial area remains more or less constant as DNAPL saturation decreases, unlike in the case of residual DNAPL blobs. The decreasing depth of the contact interface changes the flow field and causes decreasing water flow velocity above the top of the DNAPL pool, suggesting the dependence of the mass transfer rate on the depth of the interface, or alternatively, the remaining mass percentage in the fracture. Simulation results show that the resultant Sherwood number Sh is significantly smaller than in the case of residual blobs for any given Peclet number, indicating slower mass transfer. The results also show that the Sh can be well fitted with a power-law function of Pe and remaining mass percentage. The obtained relationships of dimensionless groups concerning the mass transfer characteristics at the level of individual fractures can be further used in predictive modeling of dissolution at a larger (fracture network) scale.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Water Pollutants, Chemical/analysis
12.
Ground Water ; 51(2): 229-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22834810

ABSTRACT

The release of stored dissolved contaminants from low permeability zones contributes to plume persistence beyond the time when dense nonaqueous phase liquid (DNAPL) has completely dissolved. This is fundamental to successfully meeting acceptable low concentrations in groundwater that are driven by site-specific cleanup goals. The study goals were to assess the role of DNAPL entrapment morphology on mass storage and plume longevity. As controlled field studies are not feasible, two-dimensional (2D) test tanks were used to quantify the significance of mass loading processes from source dissolution and stored mass rebound. A simple two-layer soil domain representing a high permeable formation sand overlying a zone of lower permeability sand was used in the tests. DNAPL mass depletion through dissolution was monitored via X-ray photon attenuation, and effluent samples were used to monitor the plume. These data enabled analysis of the DNAPL distribution, the dissolved plume, and the dissolved phase distribution within the low permeability layer. Tests in an intermediate tank showed that mass storage contributes substantially to plume longevity. Detectable effluent concentrations persisted long after DNAPL depletion. The small tank results indicated that the DNAPL morphology influenced the flow field and caused distinctive transport mechanisms contributing to mass storage. Zones of high DNAPL saturation at the interface between the low and high permeability layers exhibited flow bypassing and diffusion dominated transport into the low permeability layer. In the absence of a highly saturated DNAPL zone near the soil interface the contaminant penetrated deeper into the low permeability layer caused by a combination of advection and diffusion.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , Water Pollution, Chemical
13.
J Contam Hydrol ; 133: 1-16, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22481125

ABSTRACT

Understanding of the entrapment and dissolution behavior of dense non-aqueous phase liquids (DNAPLs) in single fractures is important for modeling contaminant flux generation from fractured sites. Here a systematic numerical study is presented to investigate the effect of fracture aperture statistics on DNAPL migration, entrapment and dissolution within individual, variable-aperture fractures. Both fractures with open and closed bottom boundaries were considered. For the simulation a continuum-based two-phase model was used with a capillary pressure function which calculates the entry pressure based on the local aperture. Prior to application the model was compared against the invasion percolation approach and found more suitable for the present study, in particular as it allows a more versatile presentation of boundary conditions. The results showed that increasing aperture standard deviation and/or decreasing correlation length lead to larger amounts of entrapped DNAPL (due to the fact that larger standard deviation produces more distinct contrast between small and large aperture regions and the fact that longer correlation length provides more possible channels through the fracture) as well as larger maximum and average sizes of DNAPL blobs, and subsequently lead to longer times for complete dissolution. To understand the relationship between the solute flux and the remaining mass, a simplified source depletion function which links the outflow concentration to the DNAPL saturation was found adequate to describe the dissolution process for the case where the bottom boundary is open for DNAPL migration and thus the DNAPL does not accumulate to form a pool. The parameters in this function were not very sensitive to variations in correlation length but were sensitive to aperture standard deviation. The same average entrapped DNAPL saturation produced considerably smaller solute concentrations in cases with larger aperture variability due to the larger average size of DNAPL blobs (i.e., smaller contact area for DNAPL dissolution). Boundary conditions had a significant impact on DNAPL entrapment and dissolution. A closed boundary at the bottom led to DNAPL pooling (i.e., large continuous blobs) which causes significant tailing in the dissolution breakthrough curve due to water bypassing.


Subject(s)
Environmental Monitoring/statistics & numerical data , Models, Theoretical , Water Pollutants, Chemical/analysis , Computer Simulation , Geological Phenomena , Groundwater , Solubility , Water Pollutants, Chemical/chemistry
14.
Environ Sci Technol ; 45(14): 6102-9, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21678951

ABSTRACT

Polymer-modified nanoscale zerovalent iron (NZVI) particles are delivered into porous media for in situ remediation of nonaqueous phase liquid (NAPL) source zones. A systematic and quantitative evaluation of NAPL targeting by polymer-modified NZVI in two-dimensional (2-D) porous media under field-relevant conditions has not been reported. This work evaluated the importance of NZVI particle concentration, NAPL saturation, and injection strategy on the ability of polymer-modified NZVI (MRNIP2) to target the NAPL/water interface in situ in a 2-D porous media model. Dodecane was used as a NAPL model compound for this first demonstration of source zone targeting in 2-D. A driving force for NAPL targeting, the surface activity of MRNIP2 at the NAPL/water interface was verified ex situ by its ability to emulsify NAPL in water. MRNIP2 at low particle concentration (0.5 g/L) did not accumulate in or near entrapped NAPL, however, MRNIP2 at moderate and high particle concentrations (3 and 15 g/L) did accumulate preferentially at entrapped NAPL, i.e., it was capable of in situ targeting. The amount of MRNIP2 that targets a NAPL source depends on NAPL saturation (S(n)), presumably because the saturation controls the available NAPL/water interfacial area and the flow field through the NAPL source. At effective S(n) close or equal to 100%, MRNIP2 bypassed NAPL and accumulated only at the periphery of the entrapped NAPL region. At lower S(n), flow also carries MRNIP2 to NAPL/water interfaces internal to the entrapped NAPL region. However, the mass of accumulated MRNIP2 per unit available NAPL/water interfacial area is relatively constant (∼0.8 g/m(2) for MRNIP2 = 3 g/L) from S(n) = 13 to ∼100%, suggesting that NAPL targeting is mostly controlled by MRNIP2 sorption onto the NAPL/water interface.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrocarbons, Chlorinated/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Water Pollutants, Chemical/analysis , Alkanes , Hydrocarbons, Chlorinated/analysis , Porosity
15.
Environ Sci Technol ; 44(23): 9086-93, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21058703

ABSTRACT

Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ∼30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ∼70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Restoration and Remediation/methods , Iron/analysis , Kinetics , Metal Nanoparticles/analysis , Particle Size , Polymers/chemistry , Porosity , Silicon Dioxide/chemistry , Surface Properties , Water Pollutants, Chemical/analysis
16.
J Contam Hydrol ; 118(3-4): 152-64, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20926157

ABSTRACT

Controlled emplacement of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) particles at high particle concentration (1-10 g/L) is needed for effective in situ subsurface remediation using NZVI. Deep bed filtration theory cannot be used to estimate the transport and deposition of concentrated polyelectrolyte-modified NZVI dispersions (>0.03 g/L) because particles agglomerate during transport which violates a fundamental assumption of the theory. Here we develop two empirical correlations for estimating the deposition and transport of concentrated polyelectrolyte-modified NZVI dispersions in saturated porous media when NZVI agglomeration in porous media is assumed to reach steady state quickly. The first correlation determines the apparent stable agglomerate size formed during NZVI transport in porous media for a fixed hydrogeochemical condition. The second correlation estimates the attachment efficiency (sticking coefficient) of the stable agglomerates. Both correlations are described using dimensionless numbers derived from parameters affecting deposition and agglomeration in porous media. The exponents for the dimensionless numbers are determined from statistical analysis of breakthrough data for polyelectrolyte-modified NZVI dispersions collected in laboratory scale column experiments for a range of ionic strength (1, 10, and 50mM Na(+) and 0.25, 1, and 1.25 mM Ca(2+)), approach velocity (0.8 to 55 × 10(-4)m/s), average collector sizes (d(50)=99 µm, 300 µm, and 880 µm), and polyelectrolyte surface modifier properties. Attachment efficiency depended on approach velocity and was inversely related to collector size, which is contrary to that predicted from classic filtration models. High ionic strength, the presence of divalent cations, lower extended adsorbed polyelectrolyte layer thickness, decreased approach velocity, and a larger collector size promoted NZVI agglomeration and deposition and thus limited its mobility in porous media. These effects are captured quantitatively in the two correlations developed. The application and limitations of using the correlations for preliminary design of in situ NZVI emplacement strategies is discussed.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide , Water Purification
17.
Ground Water ; 48(5): 771-80, 2010.
Article in English | MEDLINE | ID: mdl-20199589

ABSTRACT

The emerging technology of wireless sensor networks (WSNs) is an integrated, distributed, wireless network of sensing devices. It has the potential to monitor dynamic hydrological and environmental processes more effectively than traditional monitoring and data acquisition techniques by providing environmental information at greater spatial and temporal resolutions. Furthermore, due to continuing high-performance computing development, these data may be introduced into increasingly robust and complex numerical models; for instance, the parameters of subsurface transport simulators may be automatically updated. Early field deployments and laboratory experiments conducted using in situ sensor technology and WSNs indicated significant fundamental issues concerning sensor and network hardware reliability-suggesting that investigations should first be conducted in controlled environments before field deployment. A first step in this validation process involves evaluating the predictive capability of a computational advection-dispersion transport model when incorporating concentration data from a WSN simulation. Data quality is a major concern, especially when sensor readings are automatically fed into data assimilation procedures. The appropriate employment of an independent WSN fault detection service can ensure that erroneous data (e.g., missing or anomalous values) do not mislead the model. Parameter estimation regularization techniques may then deal with remaining data noise. The primary purpose of this study is to determine the suitability of WSNs (and other in situ data delivery technologies) for use in contaminant transport modeling applications by conducting research in a realistic simulative environment.


Subject(s)
Models, Theoretical , Water Movements , Reproducibility of Results
18.
Environ Sci Technol ; 43(13): 5079-85, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19673310

ABSTRACT

The effect of particle concentration, size distribution (polydispersity) and magnetic attractive forces (Fe(0) content) on agglomeration and transport of poly(styrene sulfonate) (PSS) modified NZVI was studied in water-saturated sand (d(p) = 300 microm) columns. Particle concentrations ranged from 0.03 to 6 g/L in 5 mM NaCl/5 mM NaHCO3 at a pore water velocity of 3.2 x 10(-4) m/s. Three NZVI dispersions with different intrinsic particle size distributions obtained from sequential sedimentation are compared. The influence of magnetic attraction (Fe(0) content) on NZVI agglomeration and deposition in porous media is assessed by comparing the deposition behavior of PSS-modified NZVI (magnetic) having different Fe(0) contents with PSS-modified hematite (nonmagnetic) with the same surface modifier. At low particle concentration (30 mg/L) all particles were mobile in sand columns regardless of size or magnetic attractive forces. At high concentration (1 to 6 g/L), deposition of the relatively monodisperse dispersion containing PSS-modified NZVI (hydrodynamic radius (R(H)) = 24 nm) with the lowest Fe(0) content (4 wt%) is low (attachment efficiency (alpha) = 2.5 x 10(-3)), insensitive to particle concentration, and similar to PSS-modified hematite. At 1 to 6 g/L, the attachment efficiency of polydisperse dispersions containing both primary particles and sintered aggregates (R(H) from 15 to 260 nm) of PSS-modified NZVI with a range of Fe(0) content (10-60%) is greater (alpha = 1.2 x 10(-2) to 7.2 x 10(-2) and is sensitive to particle size distribution. The greater attachment for larger, more polydisperse Fe(0) nanoparticles with higher Fe(0) content is a result of their agglomeration during transport in porous media because the magnetic attractive force between particles increases with the sixth power of particle/agglomerate radius. A filtration model that considers agglomeration in porous media and subsequent deposition explains the observed transport of polydisperse PSS-modified NZVI at high concentration.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Electrolytes , Environmental Monitoring/methods , Ferric Compounds/chemistry , Filtration , Humic Substances , Magnetics , Nanotechnology/methods , Particle Size , Polystyrenes/chemistry , Silicon Dioxide/chemistry , Water/chemistry
19.
J Contam Hydrol ; 94(3-4): 215-34, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-17706832

ABSTRACT

Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.


Subject(s)
Tetrachloroethylene/chemistry , Water Movements , Water Pollutants, Chemical/chemistry , Polysorbates/chemistry , Silicon Dioxide , Solubility , Succinates/chemistry , Surface-Active Agents/chemistry , Water Supply
20.
Environ Sci Technol ; 41(4): 1384-9, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593746

ABSTRACT

High-saturation pools of dense nonaqueous phase liquid (DNAPL) are long-term sources of groundwater contamination at many hazardous-waste sites. DNAPL pools consist of a high saturation zone with slow dissolution overlaid by a transition zone with lower saturations and more rapid dissolution. Effects of biological activity on pool dissolution must be understood to evaluate and implement bioremediation strategies. Bioenhanced dissolution of tetrachloroethene (PCE) in transition zones of high-saturation pools was investigated in a custom-designed 5-cm flow cell. Experiments were conducted to characterize mass transfer following DNAPL emplacement, with and without an active microbial culture capable of reductive dehalogenation. For average pool saturations < or = 0.55, mass transfer during biodegradation was enhanced by factors of 4-13, due primarily to high mass flux of PCE degradation products. However, at an average pool saturation of 0.74, mass transfer was enhanced by factors less than 1.5. Mass transfer was significantly greater from pools with an observable transition zone than without. Advective flow through multiphase transition zones enhanced dissolution and biological activity. These laboratory-scale experimental results suggest that biotechnologies may be effective remediation strategies for depletion of source zones within pool transition zones.


Subject(s)
Tetrachloroethylene/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Solubility , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...