Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 12(1): 475, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371406

ABSTRACT

Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathological conditions such as phobias and post-traumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). Nck1 is a key neuronal adaptor protein involved in the regulation of the actin cytoskeleton and the neuronal processes believed to be involved in memory formation. However, the role of Nck1 in memory formation is not known. Here we explored the role of Nck1 in fear memory formation in lateral amygdala (LA). Reduction of Nck1 in excitatory neurons in LA enhanced long-term, but not short-term, auditory fear conditioning memory. Activation of Nck1, by using a photoactivatable Nck1 (PA-Nck1), during auditory fear conditioning in excitatory neurons in LA impaired long-term, but not short-term, fear memory. Activation of Nck1 immediately or a day after fear conditioning did not affect fear memory. The hippocampal-mediated contextual fear memory was not affected by the reduction or activation of Nck1 in LA. We show that Nck1 is localized to the presynapses in LA. Nck1 activation in LA excitatory neurons decreased the frequency of AMPA receptors-mediated miniature excitatory synaptic currents (mEPSCs). Nck1 activation did not affect GABA receptor-mediated inhibitory synaptic currents (mIPSCs). These results show that Nck1 activity in excitatory neurons in LA regulates glutamate release and sets the threshold for fear memory formation. Moreover, our research shows that Nck1 may serve as a target for pharmacological treatment of fear and anxiety disorders.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Amygdala/metabolism , Fear/physiology , Basolateral Nuclear Complex/metabolism , Memory, Long-Term , Receptors, AMPA/metabolism
2.
Sci Rep ; 12(1): 17731, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36273074

ABSTRACT

Fear memory may undergo a process after memory reactivation called reconsolidation. To examine the roles of ephrinA4 in fear memory reconsolidation an inhibitory ephrinA4 mimetic peptide (pep-ephrinA4), that targets the EphA binding site and inhibits EphA activation, was used. Pep-ephrinA4 was microinjected into the lateral amygdala (LA) of fear-conditioned rats 24 h after training and 30 min before tone CS memory retrieval. Memory retrieval was unaffected by pep-ephrinA4. However, the animals were impaired in fear memory tested 1 h or 24 h afterward when compared to controls. Fear-conditioned animals injected with pep-ephrinA4 into LA immediately after long-term memory retrieval were unaffected when tested 24 h afterward. Microinjection into LA of a peptide originated from an ephrinA4 site that does not interact with EphA did not affect fear memory reconsolidation. Rats that were administrated with pep-ephrinA4 systemically 24 h after fear conditioning and 30 min before CS memory retrieval were impaired in long-term fear conditioning memory tested 24 h afterward when compared to the control peptide. These results show that ephrinA4 binding sites are needed for long-term fear memory reconsolidation in LA and may serve as a target for the treatment of fear-related disorders by blocking reconsolidation.


Subject(s)
Amygdala , Basolateral Nuclear Complex , Animals , Rats , Amygdala/physiology , Fear/physiology , Peptides/metabolism , Rats, Sprague-Dawley , Ephrin-A4/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...