Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(4): 105785, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401845

ABSTRACT

The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of ß-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of ß-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the ß-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of ß-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (ßR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.


Subject(s)
Epithelial Sodium Channel Agonists , Epithelial Sodium Channels , Indoles , Animals , Humans , Binding Sites , Epithelial Sodium Channel Agonists/metabolism , Epithelial Sodium Channel Agonists/pharmacology , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/metabolism , Molecular Dynamics Simulation , Oocytes/drug effects , Xenopus laevis , Protein Binding , Indoles/metabolism , Indoles/pharmacology
2.
J Biol Chem ; 298(6): 102004, 2022 06.
Article in English | MEDLINE | ID: mdl-35504352

ABSTRACT

The epithelial sodium channel (ENaC) is a heterotrimer consisting of α-, ß-, and γ-subunits. Channel activation requires proteolytic release of inhibitory tracts from the extracellular domains of α-ENaC and γ-ENaC; however, the proteases involved in the removal of the γ-inhibitory tract remain unclear. In several epithelial tissues, ENaC is coexpressed with the transmembrane serine protease 2 (TMPRSS2). Here, we explored the effect of human TMPRSS2 on human αßγ-ENaC heterologously expressed in Xenopus laevis oocytes. We found that coexpression of TMPRSS2 stimulated ENaC-mediated whole-cell currents by approximately threefold, likely because of an increase in average channel open probability. Furthermore, TMPRSS2-dependent ENaC stimulation was not observed using a catalytically inactive TMPRSS2 mutant and was associated with fully cleaved γ-ENaC in the intracellular and cell surface protein fractions. This stimulatory effect of TMPRSS2 on ENaC was partially preserved when inhibiting its proteolytic activity at the cell surface using aprotinin but was abolished when the γ-inhibitory tract remained attached to its binding site following introduction of two cysteine residues (S155C-Q426C) to form a disulfide bridge. In addition, computer simulations and site-directed mutagenesis experiments indicated that TMPRSS2 can cleave γ-ENaC at sites both proximal and distal to the γ-inhibitory tract. This suggests a dual role of TMPRSS2 in the proteolytic release of the γ-inhibitory tract. Finally, we demonstrated that TMPRSS2 knockdown in cultured human airway epithelial cells (H441) reduced baseline proteolytic activation of endogenously expressed ENaC. Thus, we conclude that TMPRSS2 is likely to contribute to proteolytic ENaC activation in epithelial tissues in vivo.


Subject(s)
Epithelial Sodium Channels , Oocytes , Serine Endopeptidases , Animals , Epithelial Sodium Channels/metabolism , Humans , Ion Transport/physiology , Oocytes/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Xenopus laevis/genetics
3.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G201-G222, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34755536

ABSTRACT

Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Tract/drug effects , Ion Channels/drug effects , Liver/drug effects , Humans , Ion Channels/agonists , Receptors, Calcitriol/drug effects , Sodium Channels/drug effects
4.
Pflugers Arch ; 474(2): 217-229, 2022 02.
Article in English | MEDLINE | ID: mdl-34870751

ABSTRACT

Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2-/-) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2-/- mice. However, Habp2-/- mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2-/- mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.


Subject(s)
Epithelial Sodium Channels/metabolism , Factor VII/metabolism , Kidney/metabolism , Nephrotic Syndrome/metabolism , Peptide Hydrolases/metabolism , Sodium/metabolism , Animals , Doxorubicin/metabolism , Doxorubicin/pharmacology , Humans , Ion Transport/drug effects , Ion Transport/physiology , Kidney/drug effects , Mice , Mice, Inbred C57BL , Proteolysis/drug effects , Serine Endopeptidases/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Xenopus laevis/metabolism
5.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34345895

ABSTRACT

Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Animals , Calcium Channels , Kidney Tubules/metabolism , Mice , Polycystic Kidney, Autosomal Dominant/genetics , Receptors, Cell Surface , Signal Transduction , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
6.
Acta Physiol (Oxf) ; 232(1): e13640, 2021 05.
Article in English | MEDLINE | ID: mdl-33650216

ABSTRACT

AIM: The serine protease prostasin (Prss8) is expressed in the distal tubule and stimulates proteolytic activation of the epithelial sodium channel (ENaC) in co-expression experiments in vitro. The aim of this study was to explore the role of prostasin in proteolytic ENaC activation in the kidney in vivo. METHODS: We used genetically modified knockin mice carrying a Prss8 mutation abolishing proteolytic activity (Prss8-S238A) or a mutation leading to a zymogen-locked state (Prss8-R44Q). Mice were challenged with low sodium diet and diuretics. Regulation of ENaC activity by Prss8-S238A and Prss8-R44Q was studied in vitro using the Xenopus laevis oocyte expression system. RESULTS: Co-expression of murine ENaC with Prss8-wt or Prss8-S238A in oocytes caused maximal proteolytic ENaC activation, whereas ENaC was activated only partially in oocytes co-expressing Prss8-R44Q. This was paralleled by a reduced proteolytic activity at the cell surface of Prss8-R44Q expressing oocytes. Sodium conservation under low sodium diet was preserved in Prss8-S238A and Prss8-R44Q mice but with higher plasma aldosterone concentrations in Prss8-R44Q mice. Treatment with the ENaC inhibitor triamterene over four days was tolerated in Prss8-wt and Prss8-S238A mice, whereas Prss8-R44Q mice developed salt wasting and severe weight loss associated with hyperkalemia and acidosis consistent with impaired ENaC function and renal failure. CONCLUSION: Unlike proteolytically inactive Prss8-S238A, zymogen-locked Prss8-R44Q produces incomplete proteolytic ENaC activation in vitro and causes a severe renal phenotype in mice treated with the ENaC inhibitor triamterene. This indicates that Prss8 plays a role in proteolytic ENaC activation and renal function independent of its proteolytic activity.


Subject(s)
Enzyme Precursors , Epithelial Sodium Channels , Animals , Mice , Oocytes/metabolism , Serine Endopeptidases/metabolism , Triamterene , Xenopus laevis/metabolism
7.
J Biol Chem ; 296: 100404, 2021.
Article in English | MEDLINE | ID: mdl-33577799

ABSTRACT

Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αßγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of ß- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of ß- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.


Subject(s)
Clathrin/metabolism , Connexin 30/pharmacology , Epithelial Sodium Channels/chemistry , Nedd4 Ubiquitin Protein Ligases/metabolism , Oocytes/physiology , Animals , Endocytosis , Epithelial Sodium Channels/metabolism , Humans , Oocytes/cytology , Patch-Clamp Techniques/methods , Signal Transduction , Xenopus laevis
8.
Acta Physiol (Oxf) ; 227(4): e13286, 2019 12.
Article in English | MEDLINE | ID: mdl-31006168

ABSTRACT

AIM: In nephrotic syndrome, aberrantly filtered plasminogen (plg) is converted to active plasmin by tubular urokinase-type plasminogen activator (uPA) and thought to lead to sodium retention by proteolytic activation of the epithelial sodium channel (ENaC). This concept predicts that uPA is an important factor for sodium retention and that inhibition of uPA might be protective in nephrotic syndrome. METHODS: Activation of amiloride-sensitive currents by uPA and plg were studied in Xenopus laevis oocytes expressing murine ENaC. In doxorubicin-induced nephrotic mice, uPA was inhibited pharmacologically by amiloride and genetically by the use of uPA-deficient mice (uPA-/- ). RESULTS: Experiments in Xenopus laevis oocytes expressing murine ENaC confirmed proteolytic ENaC activation by a combination of plg and uPA which stimulated amiloride-sensitive currents with concomitant cleavage of the ENaC γ-subunit at the cell surface. Treatment of nephrotic wild-type mice with amiloride inhibited urinary uPA activity, prevented urinary plasmin formation and sodium retention. In nephrotic mice lacking uPA (uPA-/- ), urinary plasmin formation from plg was suppressed and urinary uPA activity absent. However, in nephrotic uPA-/- mice, sodium retention was not reduced compared to nephrotic uPA+/+ mice. Amiloride prevented sodium retention in nephrotic uPA-/- mice which confirmed the critical role of ENaC in sodium retention. CONCLUSION: uPA is responsible for the conversion of aberrantly filtered plasminogen to plasmin in the tubular lumen in vivo. However, uPA-dependent plasmin generation is not essential for ENaC-mediated sodium retention in experimental nephrotic syndrome.


Subject(s)
Epithelial Sodium Channels/metabolism , Sodium/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Amiloride/administration & dosage , Amiloride/pharmacology , Animals , Dose-Response Relationship, Drug , Epithelial Sodium Channel Blockers/administration & dosage , Epithelial Sodium Channel Blockers/pharmacology , Epithelial Sodium Channels/genetics , Gene Expression Regulation/drug effects , Ion Channel Gating , Mice , Mice, Knockout , Nephrotic Syndrome , Oocytes , Urokinase-Type Plasminogen Activator/genetics , Xenopus laevis
9.
J Gen Physiol ; 151(6): 820-833, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30988062

ABSTRACT

We recently demonstrated that bile acids, especially tauro-deoxycholic acid (t-DCA), modify the function of the acid-sensing ion channel ASIC1a and other members of the epithelial sodium channel (ENaC)/degenerin (DEG) ion channel family. Surprisingly, ASIC1 shares a high degree of structural similarity with the purinergic receptor P2X4, a nonselective cation channel transiently activated by ATP. P2X4 is abundantly expressed in the apical membrane of bile duct epithelial cells and is therefore exposed to bile acids under physiological conditions. Here, we hypothesize that P2X4 may also be modulated by bile acids and investigate whether t-DCA and other common bile acids affect human P2X4 heterologously expressed in Xenopus laevis oocytes. We find that application of either t-DCA or unconjugated deoxycholic acid (DCA; 250 µM) causes a strong reduction (∼70%) of ATP-activated P2X4-mediated whole-cell currents. The inhibitory effect of 250 µM tauro-chenodeoxycholic acid is less pronounced (∼30%), and 250 µM chenodeoxycholic acid, cholic acid, or tauro-cholic acid did not significantly alter P2X4-mediated currents. t-DCA inhibits P2X4 in a concentration-dependent manner by reducing the efficacy of ATP without significantly changing its affinity. Single-channel patch-clamp recordings provide evidence that t-DCA inhibits P2X4 by stabilizing the channel's closed state. Using site-directed mutagenesis, we identifiy several amino acid residues within the transmembrane domains of P2X4 that are critically involved in mediating the inhibitory effect of t-DCA on P2X4. Importantly, a W46A mutation converts the inhibitory effect of t-DCA into a stimulatory effect. We conclude that t-DCA directly interacts with P2X4 and decreases ATP-activated P2X4 currents by stabilizing the closed conformation of the channel.


Subject(s)
Bile Acids and Salts/pharmacology , Receptors, Purinergic P2X4/metabolism , Acid Sensing Ion Channels/metabolism , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Animals , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Humans , Ion Transport/drug effects , Ion Transport/physiology , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques/methods , Purinergic P2X Receptor Antagonists/pharmacology , Xenopus laevis/metabolism
10.
Pflugers Arch ; 470(7): 1087-1102, 2018 07.
Article in English | MEDLINE | ID: mdl-29589117

ABSTRACT

The bile acid-sensitive ion channel (BASIC) is a member of the ENaC/degenerin family of ion channels. It is activated by bile acids and inhibited by extracellular Ca2+. The aim of this study was to explore the molecular mechanisms mediating these effects. The modulation of BASIC function by extracellular Ca2+ and tauro-deoxycholic acid (t-DCA) was studied in Xenopus laevis oocytes heterologously expressing human BASIC using the two-electrode voltage-clamp and outside-out patch-clamp techniques. Substitution of aspartate D444 to alanine or cysteine in the degenerin region of BASIC, a region known to be critically involved in channel gating, resulted in a substantial reduction of BASIC Ca2+ sensitivity. Moreover, mutating D444 or the neighboring alanine (A443) to cysteine significantly reduced the t-DCA-mediated BASIC stimulation. A combined molecular docking/simulation approach demonstrated that t-DCA may temporarily form hydrogen bonds with several amino acid residues including D444 in the outer vestibule of the BASIC pore or in the inter-subunit space. By these interactions, t-DCA may stabilize the open state of the channel. Indeed, single-channel recordings provided evidence that t-DCA activates BASIC by stabilizing the open state of the channel, whereas extracellular Ca2+ inhibits BASIC by stabilizing its closed state. In conclusion, our results highlight the potential role of the degenerin region as a critical regulatory site involved in the functional interaction of Ca2+ and t-DCA with BASIC.


Subject(s)
Bile Acids and Salts/metabolism , Calcium/metabolism , Degenerin Sodium Channels/metabolism , Amino Acid Sequence , Animals , Bile/metabolism , Humans , Ion Channel Gating/physiology , Molecular Docking Simulation/methods , Oocytes/metabolism , Xenopus laevis/metabolism
11.
Physiol Rep ; 5(3)2017 Feb.
Article in English | MEDLINE | ID: mdl-28193786

ABSTRACT

Acid-sensing ion channels (ASICs) are nonvoltage-gated sodium channels transiently activated by extracellular protons and belong to the epithelial sodium channel (ENaC)/Degenerin (DEG) family of ion channels. Bile acids have been shown to activate two members of this family, the bile acid-sensitive ion channel (BASIC) and ENaC. To investigate whether bile acids also modulate ASIC function, human ASIC1a was heterologously expressed in Xenopus laevis oocytes. Exposing oocytes to tauro-conjugated cholic (t-CA), deoxycholic (t-DCA), and chenodeoxycholic (t-CDCA) acid at pH 7.4 did not activate ASIC1a-mediated whole-cell currents. However, in ASIC1a expressing oocytes the whole-cell currents elicited by pH 5.5 were significantly increased in the presence of these bile acids. Single-channel recordings in outside-out patches confirmed that t-DCA enhanced the stimulatory effect of pH 5.5 on ASIC1a channel activity. Interestingly, t-DCA reduced single-channel current amplitude by ~15% which suggests an interaction of t-DCA with a region close to the channel pore. Molecular docking predicted binding of bile acids to the pore region near the degenerin site (G433) in the open conformation of the channel. Site-directed mutagenesis demonstrated that the amino acid residue G433 is critically involved in the potentiating effect of bile acids on ASIC1a activation by protons.


Subject(s)
Acid Sensing Ion Channels/physiology , Bile Acids and Salts/physiology , Acid Sensing Ion Channels/metabolism , Animals , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Binding Sites , Humans , Hydrogen-Ion Concentration , Molecular Docking Simulation , Oocytes , Protons , Xenopus laevis
12.
J Biol Chem ; 291(38): 19835-47, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27489102

ABSTRACT

The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin ion channel family, which also includes the bile acid-sensitive ion channel (BASIC). So far little is known about the effects of bile acids on ENaC function. ENaC is probably a heterotrimer consisting of three well characterized subunits (αßγ). In humans, but not in mice and rats, an additional δ-subunit exists. The aim of this study was to investigate the effects of chenodeoxycholic, cholic, and deoxycholic acid in unconjugated (CDCA, CA, and DCA) and tauro-conjugated (t-CDCA, t-CA, t-DCA) form on human ENaC in its αßγ- and δßγ-configuration. We demonstrated that tauro-conjugated bile acids significantly stimulate ENaC in the αßγ- and in the δßγ-configuration. In contrast, non-conjugated bile acids have a robust stimulatory effect only on δßγENaC. Bile acids stimulate ENaC-mediated currents by increasing the open probability of active channels without recruiting additional near-silent channels known to be activated by proteases. Stimulation of ENaC activity by bile acids is accompanied by a significant reduction of the single-channel current amplitude, indicating an interaction of bile acids with a region close to the channel pore. Analysis of the known ASIC1 (acid-sensing ion channel) crystal structure suggested that bile acids may bind to the pore region at the degenerin site of ENaC. Substitution of a single amino acid residue within the degenerin region of ßENaC (N521C or N521A) significantly reduced the stimulatory effect of bile acids on ENaC, suggesting that this site is critical for the functional interaction of bile acids with the channel.


Subject(s)
Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/metabolism , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Animals , Crystallography, X-Ray , Epithelial Sodium Channels/genetics , Humans , Mice , Protein Domains , Rats , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...