Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Space Res (Amst) ; 37: 18-24, 2023 May.
Article in English | MEDLINE | ID: mdl-37087175

ABSTRACT

The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and compromise future investigations. "Remote chance" essentially implies the absence of environments where terrestrial organisms could survive and replicate. Hence, Category II missions only require simplified planetary protection documentation, including a planetary protection plan that outlines the intended or potential impact targets, brief Pre- and Post-launch analyses detailing impact strategies, and a Post-encounter and End-of-Mission Report. These requirements were applied in previous missions and are foreseen for the numerous new international missions planned for the exploration of Venus, which include NASA's VERITAS and DAVINCI missions, and ESA's EnVision mission. There are also several proposed missions including India's Shukrayaan-1, and Russia's Venera-D. These multiple plans for spacecraft coincide with a recent interest within the scientific community regarding the cloud layers of Venus, which have been suggested by some to be habitable environments. The proposed, privately funded, MIT/Rocket Lab Venus Life Finder mission is specifically designed to assess the habitability of the Venusian clouds and to search for signs of life. It includes up to three atmospheric probes, the first one targeting a launch in 2023. The COSPAR Panel on Planetary Protection evaluated scientific data that underpins the planetary protection requirements for Venus and the implications of this on the current policy. The Panel has done a thorough review of the current knowledge of the planet's conditions prevailing in the clouds. Based on the existing literature, we conclude that the environmental conditions within the Venusian clouds are orders of magnitude drier and more acidic than the tolerated survival limits of any known terrestrial extremophile organism. Because of this future orbital, landed or entry probe missions to Venus do not require extra planetary protection measures. This recommendation may be revised in the future if new observations or reanalysis of past data show any significant increment, of orders of magnitude, in the water content and the pH of the cloud layer.


Subject(s)
Mars , Space Flight , Venus , Planets , Extraterrestrial Environment , Containment of Biohazards , Exobiology
2.
Astrobiology ; 23(4): 407-414, 2023 04.
Article in English | MEDLINE | ID: mdl-36827596

ABSTRACT

Increasing antibiotic resistance (AR) poses dangers of treatment complications and even treatment failure to astronauts. An AR determinant is a gene of resistance carried by bacteria. This article considers the issue of the stability of AR determinants and the influence of manned spaceflight conditions on this characteristic. A phenomenological model has been developed that makes it possible to evaluate the integral value of the stability of determinants of AR in bacteria as a function of time. Based on experimental results obtained during implementation of the SALYUT 7 space program, the stability of determinants of AR in Escherichia coli strains isolated before and after a spaceflight in 16 astronauts was evaluated. In addition, an assessment was made of the integral value of the stability of determinants of AR in bacteria during in vitro experiments, both in spaceflight and terrestrial conditions, after preincubation in space. The calculation using the developed phenomenological model showed that the stability of AR determinants in E. coli bacteria isolated from astronauts before the spaceflight is 33% higher than after the flight. The in vitro experiment carried out on board the International Space Station showed the opposite situation-an increase in the stability of AR determinants by 33% in cultures that have been in space compared with terrestrial control. This indicates an additional influence on the stability of determinants and of the astronaut's immune system, as well as space conditions. The common result in these two types of studies is the experimental fact that the largest number of bacteria, in space conditions, had two determinants of AR. The importance of fighting bacteria with two determinants is that at least three different antibiotics are required to have an effect. This circumstance makes it possible to predict a possible strategy for the use of antibiotics in autonomous spaceflights.


Subject(s)
Escherichia coli , Space Flight , Humans , Astronauts , Drug Resistance, Microbial , Models, Theoretical
3.
Life Sci Space Res (Amst) ; 36: 27-35, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36682826

ABSTRACT

Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activities to facilitate commercial opportunities and human-crewed missions. The international standards for planetary protection have been developed through consultation with the scientific community and the space agencies by the Committee on Space Research's (COSPAR) Panel on Planetary Protection, which provides guidance for compliance with the Outer Space Treaty of 1967. In 2021, the Panel evaluated recent scientific data and literature regarding the planetary protection requirements for Mars and the implications of this on the guidelines. In this paper, we discuss the COSPAR Planetary Protection Policy for Mars, review the new scientific findings and discuss the next steps required to enable the next generation of robotic missions to Mars.


Subject(s)
Mars , Robotic Surgical Procedures , Space Flight , Humans , Planets , Extraterrestrial Environment , Spacecraft , Exobiology/methods , Containment of Biohazards , Public Policy
4.
Int J Mol Sci ; 20(18)2019 09 12.
Article in English | MEDLINE | ID: mdl-31547269

ABSTRACT

Comprehensive studies of the effects of prolonged exposure to space conditions and the overload experienced during landing on physiological and biochemical changes in the human body are extremely important in the context of planning long-distance space flights, which can be associated with constant overloads and various risk factors for significant physiological changes. Exhaled breath condensate (EBC) can be considered as a valuable subject for monitoring physiological changes and is more suitable for long-term storage than traditional monitoring subjects such as blood and urine. Herein, the EBC proteome changes due to the effects of spaceflight factors are analyzed. Thirteen EBC samples were collected from five Russian cosmonauts (i) one month before flight (background), (ii) immediately upon landing modules in the field (R0) after 169-199 days spaceflights, and (iii) on the seventh day after landing (R+7). Semi-quantitative label-free EBC proteomic analysis resulted in 164 proteins, the highest number of which was detected in EBC after landing (R0). Pathways enrichment analysis using the GO database reveals a large group of proteins which take part in keratinization processes (CASP14, DSG1, DSP, JUP, and so on). Nine proteins (including KRT2, KRT9, KRT1, KRT10, KRT14, DCD, KRT6C, KRT6A, and KRT5) were detected in all three groups. A two-sample Welch's t-test identified a significant change in KRT2 and KRT9 levels after landing. Enrichment analysis using the KEGG database revealed the significant participation of detected proteins in pathogenic E. coli infection (ACTG1, TUBA1C, TUBA4A, TUBB, TUBB8, and YWHAZ), which may indicate microbiota changes associated with being in space. This assumption is confirmed by microbial composition analysis. In general, the results suggest that EBC can be used for noninvasive monitoring of health status and respiratory tract pathologies during spaceflights, and that the obtained data are important for the development of medicine for use in extreme situations. Data are available from ProteomeXchange using the identifier PXD014191.


Subject(s)
Breath Tests/methods , Proteome/analysis , Space Flight , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Humans , Protein Interaction Maps , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , Time Factors
5.
Biochim Biophys Acta Bioenerg ; 1860(2): 121-128, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30465750

ABSTRACT

Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.


Subject(s)
Cyanobacteria/chemistry , Energy Transfer , Phycobilisomes/physiology , Radiation-Protective Agents/chemistry , Origin of Life , Photosynthesis , Phycobiliproteins/physiology , Radiation, Ionizing , Space Flight
6.
IUCrJ ; 5(Pt 6): 727-736, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30443357

ABSTRACT

The analysis of a single-particle imaging (SPI) experiment performed at the AMO beamline at LCLS as part of the SPI initiative is presented here. A workflow for the three-dimensional virus reconstruction of the PR772 bacteriophage from measured single-particle data is developed. It consists of several well defined steps including single-hit diffraction data classification, refined filtering of the classified data, reconstruction of three-dimensional scattered intensity from the experimental diffraction patterns by orientation determination and a final three-dimensional reconstruction of the virus electron density without symmetry constraints. The analysis developed here revealed and quantified nanoscale features of the PR772 virus measured in this experiment, with the obtained resolution better than 10 nm, with a clear indication that the structure was compressed in one direction and, as such, deviates from ideal icosahedral symmetry.

7.
Sci Rep ; 8(1): 13783, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214003

ABSTRACT

Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10-3-10-4 g (gravitational constant) and 687 ± 170 µGy (Gray) d-1 (20 ± 4 °C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 °C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Nitrogen Cycle/physiology , Space Flight , Weightlessness , Ammonia/metabolism , Archaea/radiation effects , Bacteria/radiation effects , Denitrification/physiology , Nitrites/metabolism , Oxidation-Reduction , Spacecraft
8.
Front Microbiol ; 8: 671, 2017.
Article in English | MEDLINE | ID: mdl-28503167

ABSTRACT

Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...