Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836075

ABSTRACT

Palm or coconut oil is capable of dissolving in a mixture of bisphenol A-based epoxy resin and a high-temperature hardener (4,4'-diaminodiphenyl sulfone) when heated and then forms a dispersed phase as a result of cross-linking and molecular weight growth of the epoxy medium. Achieving the temporary miscibility between the curing epoxy matrix and the vegetable oil allows a uniform distribution of vegetable oil droplets in the epoxy medium. This novel approach to creating a dispersed phase-change material made a cured epoxy polymer containing up to 20% oil. The miscibility of epoxy resin and oil was studied by laser interferometry, and phase state diagrams of binary mixtures were calculated according to theory and experiments. A weak effect of oil on the viscosity and kinetics of the epoxy resin curing was demonstrated by rotational rheometry. According to differential scanning calorimetry and dynamic mechanical analysis, the oil plasticizes the epoxy matrix slightly, expanding its glass transition region towards low temperatures and reducing its elastic modulus. In the cured epoxy matrix, oil droplets have a diameter of 3-14 µm and are incapable of complete crystallization due to their multi-component chemical composition and non-disappeared limited miscibility. The obtained phase-change materials have relatively low specific energy capacity but can be used alternatively as self-lubricating low-noise materials due to dispersed oil, high stiffness, and reduced friction coefficient. Palm oil crystallizes more readily, better matching the creation of phase-change materials, whereas coconut oil crystallization is more suppressed, making it better for reducing the friction coefficient of the oil-containing material.

2.
Polymers (Basel) ; 15(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37571137

ABSTRACT

The usual problem of meltable phase-change agents is the instability in their form upon heating, which can be solved by placing them into a continuous polymer matrix. Epoxy resin is a suitable medium for dispersing molten agents, but it is necessary to make the obtained droplets stable during the curing of the formed phase-change material. This work shows that molten paraffin wax forms a Pickering emulsion in an epoxy medium and in the presence of asphaltenes extracted from heavy crude oil. Theoretical calculations revealed the complex equilibrium in the epoxy/wax/asphaltene triple system due to their low mutual solubility. Rheological studies showed the viscoplastic behavior of the obtained dispersions at 25 °C, which disappears upon the heating and melting of the paraffin phase. Wax and asphaltenes increased the viscosity of the epoxy medium during its curing but did not inhibit cross-linking or reduce the glass transition temperature of the cured polymer. As a result of curing, it is possible to obtain phase-change materials containing up to 45% paraffin wax that forms a dispersed phase with a size of 0.2-6.5 µm. The small size of dispersed wax can decrease its degree of crystallinity to 13-29% of its original value, reducing the efficiency of the phase-change material.

3.
Materials (Basel) ; 14(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34500990

ABSTRACT

Composite materials of various compositions based on chitosan and polylactide were obtained in the form of films or porous bulk samples. Preliminarily, poly-d,l-lactide was synthesized by ring-opening polymerization of lactide in the presence of Ti(OiPr)4. Polylactide obtained at components molar ratio [lactide]:[Ti(OiPr)4] = 3:1 had the best molecular weight characteristics at a high product yield. Film composition with the weight ratio chitosan-polylactide 50:50 wt. % was characterized by high mechanical properties. The value of the tensile strength of the film was 72 MPa with a deformation of 10% and an elastic modulus of 40 GPa, which is higher than the tensile strength of native chitosan by ~three times. The observed effect is a consequence of the fact that the chitosan-polylactide composite has an amorphous structure in contrast to the native chitosan, which is proved by X-ray phase analysis. An increase in the elastic modulus of the composite in the range of 20-60 °C in contrast to polylactide was found by dynamic mechanical analysis. The observed effect is apparently caused by the formation of hydrogen bonds between functional groups of chitosan and polylactide which is possible through an increase in polylactide segments mobility when its glass transition temperature is reached. The composite material is biocompatible and characterized by high cellular adhesion of fibroblasts (line hTERT BJ-5ta). Their growth on the composite surface was 2.4 times more active than on native chitosan. Bulk porous samples of the composition with the weight ratio chitosan-polylactide 50:50 wt. % were synthesized by original method in ammonium bicarbonate presence. Samples were characterized by a porosity of 82.4% and an average pore size of 100 microns. The biodegradability of such material and absence of inflammatory processes were proven in vivo by the blood parameters of experimental animals. Thus, materials with the weight ratio chitosan-polylactide 50:50 wt. % are promising for potential use in regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL