Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L861-L872, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28336813

ABSTRACT

In preterm infants, soluble inflammatory mediators target lung mesenchymal cells, disrupting airway and alveolar morphogenesis. However, how mesenchymal cells respond directly to microbial stimuli remains poorly characterized. Our objective was to measure the genome-wide innate immune response in fetal lung mesenchymal cells exposed to the bacterial endotoxin lipopolysaccharide (LPS). With the use of Affymetrix MoGene 1.0st arrays, we showed that LPS induced expression of unique innate immune transcripts heavily weighted toward CC and CXC family chemokines. The transcriptional response was different between cells from E11, E15, and E18 mouse lungs. In all cells tested, LPS inhibited expression of a small core group of genes including the VEGF receptor Vegfr2 Although best characterized in vascular endothelial populations, we demonstrated here that fetal mouse lung mesenchymal cells express Vegfr2 and respond to VEGF-A stimulation. In mesenchymal cells, VEGF-A increased cell migration, activated the ERK/AKT pathway, and promoted FOXO3A nuclear exclusion. With the use of an experimental coculture model of epithelial-mesenchymal interactions, we also showed that VEGFR2 inhibition prevented formation of three-dimensional structures. Both LPS and tyrosine kinase inhibition reduced three-dimensional structure formation. Our data suggest a novel mechanism for inflammation-mediated defects in lung development involving reduced VEGF signaling in lung mesenchyme.


Subject(s)
Fetus/cytology , Immunity, Innate , Lung/embryology , Mesoderm/cytology , Mesoderm/immunology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cell Communication/drug effects , Cell Communication/genetics , Cell Movement/drug effects , Cell Movement/genetics , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental/drug effects , Immunity, Innate/drug effects , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Mesoderm/drug effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Signal Transduction/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
2.
Am J Pathol ; 186(7): 1786-1800, 2016 07.
Article in English | MEDLINE | ID: mdl-27181406

ABSTRACT

The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase ß transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase ß transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.


Subject(s)
Elastin/metabolism , Epithelium/metabolism , Inflammation/complications , Lung/embryology , Animals , Blotting, Western , Fetal Development , Humans , Immunohistochemistry , Infant, Newborn , Infant, Premature , Inflammation/metabolism , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Models, Animal , NF-kappa B/metabolism , Real-Time Polymerase Chain Reaction
3.
Development ; 141(24): 4751-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25395457

ABSTRACT

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


Subject(s)
Epithelial Cells/metabolism , Integrin beta1/metabolism , Lung/embryology , Organogenesis/physiology , Pulmonary Alveoli/embryology , Animals , Bronchoalveolar Lavage , Cell Adhesion/physiology , Cell Movement/physiology , Chemokine CCL2/metabolism , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Integrases/metabolism , Mice , Microscopy, Confocal , Pulmonary Surfactant-Associated Protein C/metabolism , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances
SELECTION OF CITATIONS
SEARCH DETAIL
...