Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genes (Basel) ; 11(4)2020 04 24.
Article in English | MEDLINE | ID: mdl-32344582

ABSTRACT

Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content. In this study, fine mapping found a C to T single nucleotide polymorphism (SNP) in exon 2 of the gene encoding cytosolic pyruvate phosphate dikinase (cyOsPPDK). The SNP resulted in a change of serine to phenylalanine acid at amino acid position 101. The gene was named FLOURY ENDOSPERM 4-5 (FLO4-5). Co-segregation analysis with the developed cleaved amplified polymorphic sequence (CAPS) markers revealed co-segregation between the floury phenotype and the flo4-5. This CAPS marker could be applied directly for marker-assisted selection. Real-time RT-PCR experiments revealed that PPDK was expressed at considerably higher levels in the flo4-5 mutant than in the wild type during the grain filling stage. Plastid ADP-glucose pyrophosphorylase small subunit (AGPS2a and AGPS2b) and soluble starch synthase (SSIIb and SSIIc) also exhibited enhanced expression in the flo4-5 mutant.


Subject(s)
Endosperm/genetics , Flour/analysis , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Pyruvate, Orthophosphate Dikinase/genetics , Endosperm/growth & development , Gene Expression Regulation, Enzymologic , Oryza/growth & development , Phenotype
2.
Mol Genet Genomics ; 293(5): 1151-1158, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29744589

ABSTRACT

Pyruvate orthophosphate dikinase (PPDK) is a component of glycolysis to mediate endosperm energy charge by adjusting the ratio of ATP to ADP and AMP that proposed to balance the flow of carbon into starch, protein, fatty acid and amino acid biosynthesis. However, these were inconsistent with the first report of a T-DNA insertional knockout mutant of the rice PPDK gene (flo4) showed that rice with inactivated PPDK gene failed to produce a opaque seeds. Therefore, the PPDK might have multifaceted functions in grain filling stage, which in some ways might depend on the direction of the reversible catalysis. Suweon 542 is a rice (Oryza sativa L.) mutant developed from Oryza sativa ssp. japonica cv. Namil. Suweon 542 has a milky-white floury endosperm suitable for dry filling, with low starch damage, low grain hardness, and fine flour particle size. The mutant locus on chromosome 5 controls the floury endosperm phenotype of Suweon 542. Fine mapping of this locus is required for efficient breeding of rice germplasm suitable for dry milling. In this study, whole genome of Suweon 542 and Milyang 23 were re-sequenced using Illumina HiSeq 2500. Co-segregation analysis of F3:4 family populations derived from Suweon 542/Milyang 23 was performed using eight CAPS markers and phenotypic evaluation of the endosperm. The target region was mapped to a 33 kb region and identified to encode cytosolic pyruvate orthophosphate dikinase protein (cyOsPPDK). A G→A SNP in exon 8 of cyOsPPDK resulting in a missense mutation from Gly to Asp at amino acid position 404 was responsible for the floury endosperm of Suweon 542. qRT-PCR experiments revealed that FLO4-4 was expressed to a considerably higher level in Suweon 542 than in Namil during the grain filling stage. Overall, fine mapping of FLO4-4 and candidate gene analysis provided further insight into the floury endosperm of rice, and reveal a novel SNP in cyOsPPDK gene can affect the floury endosperm phenotype through active PPDK gene during grain filling stage.


Subject(s)
Edible Grain/genetics , Endosperm/genetics , Oryza/genetics , Pyruvate, Orthophosphate Dikinase/genetics , Edible Grain/growth & development , Flour , Gene Expression Regulation, Plant , Mutagenesis, Insertional , Mutation , Oryza/growth & development , Seeds/genetics , Seeds/growth & development , Starch/genetics
3.
Mitochondrial DNA B Resour ; 3(1): 215-216, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-33490498

ABSTRACT

Spring orchid (Cymbidium goeringii) is one of the most important species belonging to Orchidaceae owing to its aesthetic appeal, fragrant flowers and ideal characteristics for using as a houseplant. In this study, the complete chloroplast genome of Korean C. goeringii acc. smg222 was determined by Illumina sequencing. The circular double-stranded DNA of 148,441 bp consisted of two inverted repeat regions of 25,610 bp each, a large single copy region of 83,311 bp, and a small single copy region of 13,910 bp. The genome contained 122 genes, of which 104 were unique and 18 were duplicated within the IRs. The 104 unique genes included 70 protein-coding genes, 30 distinct tRNA genes, and four rRNA genes. Phylogenetic tree analysis revealed that C. goeringii acc. smg222 was clustered with Cymbidium kanran, a cymbidium species native to Korea.

SELECTION OF CITATIONS
SEARCH DETAIL
...