Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38315754

ABSTRACT

Formaldehyde occurs naturally in food and alcoholic beverages. Formaldehyde and alcoholic beverages can cause various health problems, including irritation of the eyes, nose, and throat, respiratory problems, and skin rashes. Alcoholic beverage samples (N = 236) were collected and analyzed for formaldehyde by liquid chromatography-tandem mass spectrometry. The highest average concentrations were detected in fruit wines (1.71 µg/g), followed by wines (1.15 µg/g), cheongju (0.95 µg/g), soju (0.85 µg/g), takju (0.64 µg/g) and beers (0.61 µg/g). We assessed the exposure and risk assessment to formaldehyde from alcoholic beverages based on the monitoring data for the general population and consumers in Korea using various schemes for point estimation. The daily intakes of formaldehyde for the general population and consumers were estimated to be 83 µg and 1202 µg, respectively. The mean hazard indexes (HI) for the general population and consumers in Korea were 0.009 and 0.132, respectively. On the other hand, the mean hazard indexes (HI) for the general population and consumers in Korea were 0.009 and 0.132, respectively. The exposure to formaldehyde in these alcoholic beverages for the Korean population was shown to be of low concern, but it is necessary to monitor the level of formaldehyde in alcoholic beverages and continuously conduct exposure assessment for consumers.


Subject(s)
Alcoholic Beverages , Wine , Humans , Formaldehyde , Risk Assessment , Republic of Korea
2.
Exp Ther Med ; 23(1): 49, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34934427

ABSTRACT

6-Shogaol (SHO) and 6-gingerol (GIN), naturally derived compounds of ginger (Zingiber officinale Roscoe), have been found to have anti-allergic effects on dermatitis-like skin lesions and rhinitis. Although SHO and GIN have demonstrated a potential in various inflammatory diseases, their efficacy and mechanism in asthma have not been largely examined. Therefore, the present study demonstrated the anti-asthmatic effects of SHO and GIN on the T-helper (Th) 2 cell-mediated allergic response pathway in an ovalbumin (OVA)-induced asthma mouse model. The asthma mouse model was established with an intraperitoneal (i.p.) injection of 50 µg OVA and 1 mg aluminum hydroxide with or without an i.p. injection of SHO and GIN (10 mg/kg) before treatment with OVA. In addition, the current study assessed mast cell degranulation in antigen-stimulated RBL-2H3 cells under different treatment conditions (SHO or GIN at 0, 10, 25, 50 and 100 nM) and determined the mRNA and protein levels of anti-oxidative enzymes [superoxide dismutase (SOD)1, SOD2, glutathione peroxidase-1/2, catalase] in lung tissues. SHO and GIN inhibited eosinophilia in the bronchoalveolar lavage fluids and H&E-stained lung tissues. Both factors also decreased mucus production in periodic acid-Schiff-stained lung tissues and the levels of Th2 cytokines in these tissues. GIN attenuated oxidative stress by upregulating the expression levels of anti-oxidative proteins. In an in vitro experiment, the degranulation of RBL-2H3 rat mast cells was significantly decreased. It was found that SHO and GIN effectively suppressed the allergic response in the mouse model by inhibiting eosinophilia and Th2 cytokine production. Collectively, it was suggested that SHO can inhibit lung inflammation by attenuating the Th2 cell-mediated allergic response signals, and that GIN can inhibit lung inflammation and epithelial cell remodeling by repressing oxidative stress. Therefore, SHO and GIN could be used therapeutically for allergic and eosinophilic asthma.

4.
Reprod Toxicol ; 96: 424-431, 2020 09.
Article in English | MEDLINE | ID: mdl-32866586

ABSTRACT

Among the components of air pollution in developing countries and Asia, (NH4)2SO4 and NH4NO3 are known as major water-soluble in-organic compounds that cause particulate matter. Several researchers have been reported that the (NH4)2SO4 and NH4NO3 induce abnormal decreases in body weight, as well as pneumotoxic, and immunotoxic. Moreover, while it has been reported that (NH4)2SO4 and NH4NO3 have detrimental effects on reproduction, specific effects on male fertility have not been addressed in depth. Therefore, the present study evaluated the reproductive toxicity of (NH4)2SO4 and NH4NO3 in spermatozoa under the capacitation condition. Results showed that various sperm motion parameters were significantly altered after inhalation of (NH4)2SO4 and NH4NO3. In particular, alterations to a range of motion kinematic parameters and to capacitation status were observed after capacitation. In addition, protein kinase A (PKA) activity and tyrosine phosphorylation were altered by (NH4)2SO4 and NH4NO3 regardless of capacitation. Taken together, our results show that inhalation of (NH4)2SO4 and NH4NO3 may induce adverse effects on male fertility such as sperm motility, motion kinematics, and capacitation status via unusual tyrosine phosphorylation by abnormal PKA activity. Therefore, we suggest that exposure to (NH4)2SO4 and NH4NO3 should be highlighted as a health risk, as it may lead to male reproductive toxicity in humans and animals.


Subject(s)
Air Pollutants/toxicity , Ammonium Sulfate/toxicity , Nitrates/toxicity , Spermatozoa/drug effects , Administration, Inhalation , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Mice, Inbred C57BL , Phosphorylation/drug effects , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/physiology , Tyrosine/metabolism
5.
Reprod Toxicol ; 96: 195-201, 2020 09.
Article in English | MEDLINE | ID: mdl-32659260

ABSTRACT

Vanadium is a chemical element that enters the atmosphere via anthropogenic pollution. Exposure to vanadium affects cancer development and can result in toxic effects. Multiple studies have focused on vanadium's detrimental effect on male reproduction using conventional sperm analysis techniques. This study focused on vanadium's effect on spermatozoa following capacitation at the molecular level, in order to provide a more detailed assessment of vanadium's reproductive toxicity. We observed a decrease in germ cell density and a structural collapse of the testicular organ in seminiferous tubules during vanadium treatment. In addition, various sperm motion parameters were significantly decreased regardless of capacitation status, including sperm motility, rapid sperm motility, and progressive sperm motility. Curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency, and mean amplitude of head lateral displacement were also decreased after capacitation. Capacitation status was altered after capacitation. Vanadium dramatically enhanced protein kinase A (PKA) activity and tyrosine phosphorylation. Taken together, our results suggest that vanadium is detrimental to male fertility by negatively influencing sperm motility, motion kinematics, and capacitation status via abnormal PKA activity and tyrosine phosphorylation before and after capacitation.


Subject(s)
Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/drug effects , Vanadium Compounds/toxicity , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Male , Mice, Inbred BALB C , Phosphorylation/drug effects , Spermatozoa/metabolism , Spermatozoa/physiology , Testis/drug effects , Testis/pathology , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...