Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(5): e27580, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495185

ABSTRACT

Although epoxy-based composites that consist of inorganic fillers and matrixes are widely used in "conventional" electronic packaging applications due to their excellent insulation and robust properties, they limit their uses in "advanced electronic packaging" which requires enhanced thermal conductivity. However, conventional thermal curing methods for fabrication of epoxy-based composites do not fulfill sufficient thermal conductivity. Herein, we apply photo-induced curing strategy for fabricating alumina-incorporated epoxy-siloxane composites that consist of sol-gel derived siloxane matrix and bimodal sized alumina particles as a thermally conductive filler. We investigate how curing mechanism (thermal- or UV-curing) and varying the ratios of the alumina particles of two different sizes affect the various physical properties. It is found that photo-curing process makes greatly enhanced thermal conductivity, low thermal expansion, and high mechanical robustness compared to thermally-cured composites. As the results, we can achieve significantly enhanced thermal conductivity (>11 W/m K) with high thermal stability and mechanical robustness.

2.
ACS Appl Mater Interfaces ; 12(50): 56462-56469, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33258583

ABSTRACT

Metal nanowires (NWs) are promising transparent conducting electrode (TCE) materials because of their excellent optoelectrical performance, intrinsic mechanical flexibility, and large-scale processability. However, the surface roughness, thermal/chemical instability, and limited electrical conductivity associated with empty spaces between metal NWs are problems that are yet to be solved. Here, we report a highly reliable and robust composite TCE/substrate all-in-one platform that consists of crystalline indium tin oxide (c-ITO) top layer and surface-embedded metal NW (c-ITO/AgNW-GFRH) films for flexible optoelectronics. The c-ITO top layer (thickness: 10-30 nm) greatly improves the electrical performance of a AgNW-based electrode, retaining its transparency even after a high-temperature annealing process at 250 °C because of its thermally stable basal substrate (i.e., AgNW-GFRH). By introducing c-ITO thin film, we achieve an extremely smooth surface (Rrms < 1 nm), excellent optoelectrical performance, superior thermal (> 250 °C)/chemical stability (in sulfur-contained solution), and outstanding mechanical flexibility (bending radius = 1 mm). As a demonstration, we fabricate flexible organic devices (organic photovoltaic and organic light-emitting diode) on c-ITO/AgNW-GFRH films that show device performance comparable to that of references ITO/glass substrates and superior mechanical flexibility. With excellent stability and demonstrations, we expect that the c-ITO/AgNW-GFRHs can be used as flexible TCE/substrate films for future thin-film optoelectronics.

3.
ACS Appl Mater Interfaces ; 9(28): 24161-24168, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28656756

ABSTRACT

Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

4.
ACS Appl Mater Interfaces ; 9(24): 20299-20305, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28585812

ABSTRACT

We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.

5.
Nanoscale ; 9(19): 6370-6379, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28451680

ABSTRACT

Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al2O3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

6.
Adv Mater ; 29(19)2017 May.
Article in English | MEDLINE | ID: mdl-28295731

ABSTRACT

A flexible hard coating for foldable displays is realized by the highly cross-linked siloxane hybrid using structure-property relationships in organic-inorganic hybridization. Glass-like wear resistance, plastic-like flexibility, and highly elastic resilience are demonstrated together with outstanding optical transparency. It provides a framework for the application of siloxane hybrids in protective hard coatings with high scratch resistance and flexibility for foldable displays.

7.
ACS Appl Mater Interfaces ; 8(40): 27035-27043, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27633097

ABSTRACT

In this paper, we report flexible transparent conducting electrode (TCE) film using a silver grid (Ag grid)/silver nanowire (AgNW) hybrid structure (AG/NW-GFRHybrimer). The AG/NW-GFRHybrimer consists of an AgNW-embedded glass-fabric reinforced plastic film (AgNW-GFRHybrimer) and an electroplated Ag grid. The AgNW-GFRHybrimer is used as a flexible transparent substrate and a seed layer for electroplating. The Ag grid is fabricated via an all-solution-process; the grid pattern is formed using conventional photolithography, and Ag is deposited through electroplating. The AG/NW-GFRHybrimer exhibits excellent opto-electrical properties (transparency = 87%, sheet resistance = 13 Ω/□), superior thermal stability (250 °C for 720 min and 85 °C/85% RH for 100 h), and outstanding mechanical flexibility (bending radius = 1 mm for 2000 cycles). Finally, a touch-screen panel (four-wire resistive type) was fabricated using the AG/NW-GFRHybrimer to demonstrate its potential for use in actual optoelectronic applications.

8.
Adv Mater ; 28(26): 5169-75, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27146562

ABSTRACT

A transparent paper made of chitin nanofibers (ChNF) is introduced and its utilization as a substrate for flexible organic light-emitting diodes is demonstrated. Given its promising macroscopic properties, biofriendly characteristics, and availability of the raw material, the utilization of the ChNF transparent paper as a structural platform for flexible green electronics is envisaged.

9.
Nanoscale ; 8(7): 3916-22, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26866678

ABSTRACT

We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms < 1 nm) and excellent opto-electrical properties. A flexible touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.

10.
Small ; 11(26): 3124-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25727909

ABSTRACT

Graphene flakes (GFs) with minimized defects and oxidation ratios are incorporated into polyethylene (PE) to enhance the moisture barrier. GFs produced involving solvothermal intercalation show extremely low oxidation rates (3.17%), and are noncovalently functionalized in situ, inducing strong hydrophobicity. The fabricated composite possesses the best moisture barrier performance reported for a polymer-graphene composite.

11.
ACS Nano ; 8(10): 10973-9, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25211125

ABSTRACT

We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.

12.
Nanoscale ; 6(2): 711-5, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24284890

ABSTRACT

We report on the performance of an all-in-one flexible hybrid conducting film employing a monolithically embedded AgNW transparent electrode and a high-performance glass-fabric reinforced composite substrate (AgNW-GFRHybrimer film). Specifically, we perform in-depth investigations on the stability of the AgNW-GFRHybrimer film against heat, thermal oxidation, and wet chemicals to demonstrate the potential of the hybrid conducting film as a robust electrode platform for thin-film optoelectronic devices. With the ease of large-area processability, smooth surface topography, and robust performance stability, the AgNW-GFRHybrimer film can be a promising platform for high-performance optoelectronic devices.


Subject(s)
Electrodes , Nanowires/chemistry , Silver/chemistry , Electric Conductivity , Electronics , Graphite/chemistry , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...