Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 8(37): 16719-16724, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27714020

ABSTRACT

A carbon nanotube (CNT) sheet nanogenerator that does not require any liquid or gas flow for power generation is developed on the basis of Coulombic interactions, making the device attractive as a building block for self-powered sensors. The working principle of the CNT nanogenerator is probed in terms of sweeping speed, distance between charged object and nanotube sheet, surface charge, and number of layers of nanotube sheet. The nature of the CNT sheet and its formation process is such that simply winding the CNT sheet stripe n times around a substrate leads to increasing the power n times. For a practical demonstration of the CNT nanogenerator, a self-powered sensor array screen is developed that can read finger movements, just as with a finger command on a smartphone screen.

2.
Nat Commun ; 7: 10600, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26837457

ABSTRACT

Conversion of low-grade waste heat into electricity is an important energy harvesting strategy. However, abundant heat from these low-grade thermal streams cannot be harvested readily because of the absence of efficient, inexpensive devices that can convert the waste heat into electricity. Here we fabricate carbon nanotube aerogel-based thermo-electrochemical cells, which are potentially low-cost and relatively high-efficiency materials for this application. When normalized to the cell cross-sectional area, a maximum power output of 6.6 W m(-2) is obtained for a 51 °C inter-electrode temperature difference, with a Carnot-relative efficiency of 3.95%. The importance of electrode purity, engineered porosity and catalytic surfaces in enhancing the thermocell performance is demonstrated.

3.
Sci Rep ; 4: 6105, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25130708

ABSTRACT

Electromagnetic induction (EMI) is a mechanism of classical physics that can be utilized to convert mechanical energy to electrical energy or electrical to mechanical energy. This mechanism has not been exploited fully because of lack of a material with a sufficiently low force constant. We here show that carbon nanotube (CNT) aerogel sheets can exploit EMI to provide mechanical actuation at very low applied voltages, to harvest mechanical energy from small air pressure fluctuations, and to detect infrasound at inaudible frequencies below 20 Hz. Using conformal deposition of 100 nm thick aluminum coatings on the nanotubes in the sheets, mechanical actuation can be obtained by applying millivolts, as compared with the thousand volts needed to achieve giant-stroke electrostatic actuation of carbon nanotube aerogel sheets. Device simplicity and performance suggest possible applications as an energy harvester of low energy air fluctuations and as a sensor for infrasound frequencies.

4.
ACS Appl Mater Interfaces ; 4(5): 2338-42, 2012 May.
Article in English | MEDLINE | ID: mdl-22534584

ABSTRACT

A strategy for enhancing the heating performance of freestanding carbon nanotube (CNT) sheet is presented that involves decorating the sheet with granular-type palladium (Pd) particles. When Pd is added to the sheet, the heating efficiency of CNT sheet is increased by a factor of 3.6 (99.9 °C cm(2)/W vs 27.3 °C cm(2)/W with no Pd). Suppression of convective heat transfer loss attributes to the enhanced heat generation efficiency. However, higher heating response of CNT/Pd sheet was observed compared to CNT sheet, hence suggesting that the electron-lattice energy exchange could be additional heating mechanism in the presence of granular-type particles of Pd having a diameter of 10 nm or less. CNT sheet/Pd is quite stable, retaining its initial characteristics even after 300 cycles of on-off voltage pulses and shows fast thermal responses of the heating and cooling rates being 154 and -248 °C/s, respectively.

6.
Adv Mater ; 21(43): 4357-61, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-26042944

ABSTRACT

Pure macroscopic single-walled-carbon-nanotube (SWNT) fibers are fabricated by using a dip-coating method without any additive or additional electrical equipment or complex apparatus. The present method only utilizes microfluidics, which includes capillary condensation, capillary flow, and surface tension, and results in the self-assembly and self-alignment of SWNT colloids.

SELECTION OF CITATIONS
SEARCH DETAIL
...