Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 135(20): 7394-7, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23647071

ABSTRACT

Hierarchically porous carbon-coated ZnO quantum dots (QDs) (~3.5 nm) were synthesized by a one-step controlled pyrolysis of the metal-organic framework IRMOF-1. We have demonstrated a scalable and facile synthesis of carbon-coated ZnO QDs without agglomeration by structural reorganization. This unique microstructure exhibits outstanding electrochemical performance (capacity, cyclability, and rate capability) when evaluated as an anode material for lithium ion batteries.


Subject(s)
Carbon/chemistry , Lithium/chemistry , Organometallic Compounds/chemistry , Quantum Dots , Zinc Oxide/chemistry , Electric Power Supplies , Electrochemical Techniques , Electrodes , Porosity , Surface Properties , Zinc Oxide/chemical synthesis
2.
Nanotechnology ; 23(3): 035604, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22172680

ABSTRACT

Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.


Subject(s)
Environmental Pollutants/chemistry , Nanotubes, Carbon/chemistry , Rhodamines/chemistry , Titanium/chemistry , Adsorption , Catalysis , Environmental Pollutants/isolation & purification , Nanotubes, Carbon/ultrastructure , Photolysis , Rhodamines/isolation & purification
3.
Nanotechnology ; 22(40): 405402, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21911931

ABSTRACT

Hyper-networked Li(4)Ti(5)O(12)/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li(4)Ti(5)O(12), and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li(4)Ti(5)O(12)/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g(-1) at 4000 mA g(-1) as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg(-1) and 22 W kg(-1) at power densities of 50 W kg(-1) and 4000 W kg(-1), respectively, which are superior to the values observed for the AC [symbol: see text] AC symmetric electrode system.

4.
J Hazard Mater ; 186(1): 376-82, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21146926

ABSTRACT

Nanostructured ZnO materials have unique and highly attractive properties and have inspired interest in their research and development. This paper presents a facile method for the preparation of novel ZnO-based nanostructured architectures using a metal organic framework (MOF) as a precursor. In this approach, ZnO nanoparticles and ZnO@C hybrid composites were produced under several heating and atmospheric (air or nitrogen) conditions. The resultant ZnO nanoparticles formed hierarchical aggregates with a three-dimensional cubic morphology, whereas ZnO@C hybrid composites consisted of faceted ZnO crystals embedded within a highly porous carbonaceous species, as determined by several characterization methods. The newly synthesized nanomaterials showed relatively high photocatalytic decomposition activity and significantly enhanced adsorption capacities for organic pollutants.


Subject(s)
Carbon/chemistry , Zinc Oxide/chemistry , Adsorption , Catalysis , Environmental Pollutants/isolation & purification , Environmental Restoration and Remediation/methods , Metal Nanoparticles , Microscopy, Electron, Scanning , Photochemistry , Rhodamines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...