Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138478

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson's disease.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Humans , Parkinson Disease/metabolism , Lipopolysaccharides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Neuroinflammatory Diseases , Antioxidants/pharmacology , Antioxidants/metabolism , Neurodegenerative Diseases/metabolism , Microglia
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569796

ABSTRACT

Microplastics (MPs) are recognized as environmental pollutants with potential implications for human health. Considering the rapid increase in obesity rates despite stable caloric intake, there is a growing concern about the link between obesity and exposure to environmental pollutants, including MPs. In this study, we conducted a comprehensive investigation utilizing in silico, in vitro, and in vivo approaches to explore the brain distribution and physiological effects of MPs. Molecular docking simulations were performed to assess the binding affinity of three plastic polymers (ethylene, propylene, and styrene) to immune cells (macrophages, CD4+, and CD8+ lymphocytes). The results revealed that styrene exhibited the highest binding affinity for macrophages. Furthermore, in vitro experiments employing fluorescence-labeled PS-MPs (fPS-MPs) of 1 µm at various concentrations demonstrated a dose-dependent binding of fPS-MPs to BV2 murine microglial cells. Subsequent oral administration of fPS-MPs to high-fat diet-induced obese mice led to the co-existence of fPS-MPs with immune cells in the blood, exacerbating impaired glucose metabolism and insulin resistance and promoting systemic inflammation. Additionally, fPS-MPs were detected throughout the brain, with increased activation of microglia in the hypothalamus. These findings suggest that PS-MPs significantly contribute to the exacerbation of systemic inflammation in high-fat diet-induced obesity by activating peripheral and central inflammatory immune cells.

3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499198

ABSTRACT

Obesity is a chronic peripheral inflammation condition that is strongly correlated with neurodegenerative diseases and associated with exposure to environmental chemicals. The aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear receptor activated by environmental chemical, such as dioxins, and also is a regulator of inflammation through interacting with nuclear factor (NF)-κB. In this study, we evaluated the anti-obesity and anti-inflammatory activity of HBU651, a novel AhR antagonist. In BV2 microglia cells, HBU651 successfully inhibited lipopolysaccharide (LPS)-mediated nuclear localization of NF-κB and production of NF-κB-dependent proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. It also restored LPS-induced mitochondrial dysfunction. While mice being fed a high-fat diet (HFD) induced peripheral and central inflammation and obesity, HBU651 alleviated HFD-induced obesity, insulin resistance, glucose intolerance, dyslipidemia, and liver enzyme activity, without hepatic and renal damage. HBU651 ameliorated the production of inflammatory cytokines and chemokines, proinflammatory Ly6chigh monocytes, and macrophage infiltration in the blood, liver, and adipose tissue. HBU651 also decreased microglial activation in the arcuate nucleus in the hypothalamus. These findings suggest that HBU651 may be a potential candidate for the treatment of obesity-related metabolic diseases.


Subject(s)
Diet, High-Fat , Receptors, Aryl Hydrocarbon , Animals , Mice , Cytokines , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Obese , NF-kappa B/metabolism , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tumor Necrosis Factor-alpha
4.
Antioxidants (Basel) ; 11(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36358481

ABSTRACT

Chronic exposure to some environmental polluting chemicals (EPCs) is strongly associated with metabolic syndrome, and insulin resistance is a major biochemical abnormality in the skeletal muscle in patients with metabolic syndrome. However, the causal relationship is inconsistent and little is known about how EPCs affect the insulin signaling cascade in skeletal muscle. Here, we investigated whether exposure to 100 pM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD) as a low dose of dioxin induces insulin resistance in C2C12 myocytes. The treatment with TCDD inhibited the insulin-stimulated glucose uptake and translocation of glucose transporter 4 (GLUT4). The low-dose TCDD reduced the expression of insulin receptor ß (IRß) and insulin receptor substrate (IRS)-1 without affecting the phosphorylation of Akt. The TCDD impaired mitochondrial activities, leading to reactive oxygen species (ROS) production and the blockage of insulin-induced Ca2+ release. All TCDD-mediated effects related to insulin resistance were still observed in aryl hydrocarbon receptor (AhR)-deficient myocytes and prevented by MitoTEMPO, a mitochondria-targeting ROS scavenger. These results suggest that low-dose TCDD stress may induce muscle insulin resistance AhR-independently and that mitochondrial oxidative stress is a novel therapeutic target for dioxin-induced insulin resistance.

5.
Pharmaceutics ; 14(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015301

ABSTRACT

Obesity is closely linked to chronic inflammation in peripheral organs and the hypothalamus. Chronic consumption of a high-fat diet (HFD) induces the differentiation of Ly6chigh monocytes into macrophages in adipose tissue, the liver, and the brain, as well as the secretion of pro-inflammatory cytokines. Although cinnamon improves obesity and related diseases, it is unclear which components of cinnamon can affect macrophages and inflammatory cytokines. We performed in silico analyses using ADME, drug-likeness, and molecular docking simulations to predict the active compounds of cinnamon. Among the 82 active compounds of cinnamon, cinnamic acid (CA) showed the highest score of ADME, blood-brain barrier permeability, drug-likeness, and cytokine binding. We then investigated whether CA modulates obesity-induced metabolic profiles and macrophage-related inflammatory responses in HFD-fed mice. While HFD feeding induced obesity, CA ameliorated obesity and related symptoms, such as epididymal fat gain, insulin resistance, glucose intolerance, and dyslipidemia, without hepatic and renal toxicity. CA also improved HFD-induced tumor necrosis factor-α, fat deposition, and macrophage infiltration in the liver and adipose tissue. CA decreased Ly6chigh monocytes, adipose tissue M1 macrophages, and hypothalamic microglial activation. These results suggest that CA attenuates the peripheral and hypothalamic inflammatory monocytes/macrophage system and treats obesity-related metabolic disorders.

6.
Endocrinol Metab (Seoul) ; 36(2): 436-446, 2021 04.
Article in English | MEDLINE | ID: mdl-33866778

ABSTRACT

BACKGROUND: High circulating levels of dioxins and dioxin-like chemicals, acting via the aryl hydrocarbon receptor (AhR), have previously been linked to diabetes. We now investigated whether the serum AhR ligands (AhRL) were higher in subjects with metabolic syndrome (MetS) and in subjects who had developed a worsened glucose tolerance over time. METHODS: Serum AhRL at baseline was measured by a cell-based AhRL activity assay in 70-year-old subjects (n=911) in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. The main outcome measures were prevalent MetS and worsening of glucose tolerance over 5 years of follow-up. RESULTS: AhRL was significantly elevated in subjects with prevalent MetS as compared to those without MetS, following adjustment for sex, smoking, exercise habits, alcohol intake and educational level (P=0.009). AhRL at baseline was higher in subjects who developed impaired fasting glucose or diabetes at age 75 years than in those who remained normoglycemic (P=0.0081). The odds ratio (OR) of AhRL for worsening glucose tolerance over 5 years was 1.43 (95% confidence interval [CI], 1.13 to 1.81; P=0.003, continuous variables) and 2.81 (95% CI, 1.31 to 6.02; P=0.008, in the highest quartile) adjusted for sex, life style factors, body mass index, and glucose. CONCLUSION: These findings support a large body of epidemiologic evidence that exposure to AhR transactivating substances, such as dioxins and dioxin-like chemicals, might be involved in the pathogenesis of MetS and diabetes development. Measurement of serum AhRL in humans can be a useful tool in predicting the onset of metabolic disorders.


Subject(s)
Diabetes Mellitus , Metabolic Syndrome , Aged , Body Mass Index , Glucose , Humans , Metabolic Syndrome/epidemiology , Prospective Studies
7.
Environ Health ; 19(1): 105, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046063

ABSTRACT

BACKGROUND: Persistent organic pollutants (POPs) may cause diabetes, in part through aryl hydrocarbon receptor (AhR) binding. Ensuing mitochondrial dysfunction is postulated to mediate this effect. We aim to investigate the association of POPs with incident diabetes indirectly by bio-assaying AhR ligand bioactivity and intracellular ATP level induced by participant serum samples. METHODS: In incident case-cohort analyses of one ELSA-Brasil center, 1605 eligible subjects without diabetes at baseline had incident diabetes ascertained by self-report, medication use, OGTT or HbA1c at follow-up 4 years later. We assayed AhR ligand bioactivity (AhRL) and intracellular ATP content, the latter reflecting the presence of mitochondria-inhibiting substances (MIS), following incubation of recombinant mouse Hepa1c1c7 cells with participant sera for 71 incident diabetes cases and 472 randomly selected controls. RESULTS: In multiply-adjusted proportional hazards regression analyses, those with above-median AhRL and below-median MIS-ATP had 69 and 226% greater risk of developing diabetes (HR = 1.69; 95%CI 1.01-2.83 and 3.26; 1.84-5.78), respectively. A strong interaction was seen between the two exposures (HRhigh AhRL/low MIS-ATP vs. low AhRL/high MIS-ATP = 8.15; 2.86-23.2). CONCLUSION: The markedly increased incidence of diabetes seen in those with both higher AhR ligand bioactivity and increased mitochondrial inhibition supports the hypothesis that widespread POPs exposure contributes to the diabetes epidemic.


Subject(s)
Diabetes Mellitus, Type 2/epidemiology , Receptors, Aryl Hydrocarbon/metabolism , Adenosine Triphosphate/metabolism , Adult , Animals , Cell Line , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Environmental Pollutants/adverse effects , Female , Glycated Hemoglobin/analysis , Humans , Incidence , Ligands , Longitudinal Studies , Male , Mice , Middle Aged , Self Report
8.
Sci Rep ; 10(1): 6339, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286339

ABSTRACT

Exposure to environment-polluting chemicals (EPC) is associated with the development of diabetes. Many EPCs exert toxic effects via aryl hydrocarbon receptor (AhR) and/or mitochondrial inhibition. Here we investigated if the levels of human exposure to a mixture of EPC and/or mitochondrial inhibitors could predict the development of diabetes in a prospective study, the Korean Genome and Epidemiological Study (KoGES). We analysed AhR ligands (AhRL) and mitochondria-inhibiting substances (MIS) in serum samples (n = 1,537), collected during the 2008 Ansung KoGES survey with a 4-year-follow-up. Serum AhRL, determined by the AhR-dependent luciferase reporter assay, represents the contamination level of AhR ligand mixture in serum. Serum levels of MIS, analysed indirectly by MIS-ATP or MIS-ROS, are the serum MIS-induced mitochondria inhibiting effects on ATP content or reactive oxygen species (ROS) production in the cultured cells. Among 919 normal subjects at baseline, 7.1% developed impaired glucose tolerance (IGT) and 1.6% diabetes after 4 years. At the baseline, diabetic and IGT sera displayed higher AhRL and MIS than normal sera, which correlated with indices of insulin resistance. When the subjects were classified according to ROC cut-off values, fully adjusted relative risks of diabetes development within 4 years were 7.60 (95% CI, 4.23-13.64), 4.27 (95% CI, 2.38-7.64), and 21.11 (95% CI, 8.46-52.67) for AhRL ≥ 2.70 pM, MIS-ATP ≤ 88.1%, and both, respectively. Gender analysis revealed that male subjects with AhRL ≥ 2.70 pM or MIS-ATP ≤ 88.1% showed higher risk than female subjects. High serum levels of AhRL and/or MIS strongly predict the future development of diabetes, suggesting that the accumulation of AhR ligands and/or mitochondrial inhibitors in body may play an important role in the pathogenesis of diabetes.


Subject(s)
Air Pollutants/toxicity , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers/blood , Diabetes Mellitus/blood , Mitochondria/drug effects , Receptors, Aryl Hydrocarbon/genetics , Aged , Basic Helix-Loop-Helix Transcription Factors/blood , Diabetes Mellitus/chemically induced , Diabetes Mellitus/pathology , Environmental Biomarkers/genetics , Female , Glucose Intolerance/blood , Glucose Intolerance/genetics , Glucose Tolerance Test , Humans , Insulin Resistance/genetics , Ligands , Male , Middle Aged , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/blood , Republic of Korea
9.
Exp Mol Med ; 50(8): 1-13, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120245

ABSTRACT

An excess of reactive oxygen species (ROS) relative to the antioxidant capacity causes oxidative stress, which plays a role in the development of Parkinson's disease (PD). Because mitochondria are both sites of ROS generation and targets of ROS damage, the delivery of antioxidants to mitochondria might prevent or alleviate PD. To transduce the antioxidant protein human metallothionein 1A (hMT1A) into mitochondria, we computationally designed a cell-penetrating artificial mitochondria-targeting peptide (CAMP). The recombinant CAMP-conjugated hMT1A fusion protein (CAMP-hMT1A) successfully localized to the mitochondria. Treating a cell culture model of PD with CAMP-hMT1A restored tyrosine hydroxylase expression and mitochondrial activity and reduced ROS production. Furthermore, injection of CAMP-hMT1A into the brain of a mouse model of PD rescued movement impairment and dopaminergic neuronal degeneration. CAMP-hMT1A delivery into mitochondria might be therapeutic against PD by alleviating mitochondrial damage, and we predict that CAMP could be used to deliver other cargo proteins to the mitochondria.


Subject(s)
Cell-Penetrating Peptides/therapeutic use , Metallothionein/therapeutic use , Mitochondria/metabolism , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Amino Acid Sequence , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Computer Simulation , Disease Models, Animal , Green Fluorescent Proteins/metabolism , Humans , Metallothionein/pharmacology , Mice , Mitochondria/drug effects , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/pathology , Protein Transport , Recombinant Fusion Proteins/therapeutic use , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...