Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(13)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32605048

ABSTRACT

Low-cost light scattering particulate matter (PM) sensors have been widely researched and deployed in order to overcome the limitations of low spatio-temporal resolution of government-operated beta attenuation monitor (BAM). However, the accuracy of low-cost sensors has been questioned, thus impeding their wide adoption in practice. To evaluate the accuracy of low-cost PM sensors in the field, a multi-sensor platform has been developed and co-located with BAM in Dongjak-gu, Seoul, Korea from 15 January 2019 to 4 September 2019. In this paper, a sample variation of low-cost sensors has been analyzed while using three commercial low-cost PM sensors. Influences on PM sensor by environmental conditions, such as humidity, temperature, and ambient light, have also been described. Based on this information, we developed a novel combined calibration algorithm, which selectively applies multiple calibration models and statistically reduces residuals, while using a prebuilt parameter lookup table where each cell records statistical parameters of each calibration model at current input parameters. As our proposed framework significantly improves the accuracy of the low-cost PM sensors (e.g., RMSE: 23.94 → 4.70 µ g/m 3 ) and increases the correlation (e.g., R 2 : 0.41 → 0.89), this calibration model can be transferred to all sensor nodes through the sensor network.

2.
Sci Total Environ ; 409(13): 2652-61, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21524786

ABSTRACT

Active chlorine comprising hypochlorite (OCl⁻), hypochlorous acid (HOCl) and chlorine (Cl2) is the active constituent in bleach formulations for a variety of industrial and consumer applications. However, the strong oxidative reactivity of active chlorine can cause adverse effects on both human health and the environment. In this study, aerosolized Oxone® [2KHSO5, KHSO4, K2SO4] with saline solution has been utilized to produce active chlorine (HOCl and Cl2). To investigate the impact of active chlorine on volatile organic compound (VOC) oxidation, 2-methyl-2-butene (MB) was photoirradiated in the presence of active chlorine using a 2-m³ Teflon film indoor chamber. The resulting carbonyl products produced from photooxidation of MB were derivatized with O-(2,3,4,5,6-pentafluorobenzyl) hydroxyamine hydrochloride (PFBHA) and analyzed using gas chromatograph-ion trap mass spectrometer (GC/ITMS). The photooxidation of MB in the presence of active chlorine was simulated with an explicit kinetic model using a chemical solver (Morpho) which included both Master Chemical Mechanism (MCM) and Cl radical reactions. The reaction rate constants of a Cl radical with MB and its oxidized products were estimated using a Structure-Reactivity Relationship method. Under dark conditions no effect of active chlorine on MB oxidation was apparent, whereas under simulated daylight conditions (UV irradiation) rapid MB oxidation was observed due to photo-dissociation of active chlorine. The model simulation agrees with chamber data showing rapid production of oxygenated products that are characterized using GC/ITMS. Ozone formation was enhanced when MB was oxidized in the presence of irradiated active chlorine and NO(x).


Subject(s)
Air Pollutants/chemistry , Chlorine/chemistry , Epoxy Compounds/chemistry , Air Pollutants/analysis , Epoxy Compounds/analysis , Kinetics , Models, Chemical , Oxidants, Photochemical , Oxidation-Reduction , Ozone/chemistry , Photochemical Processes , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...