Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Cell Biol ; 56(4): 421-427, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37649128

ABSTRACT

Bladder exstrophy is a rare congenital condition of the pelvis, bladder, and lower abdomen that opens the bladder against the abdominal wall, produces aberrant growth, short penis, upward curvature during erection, wide penis, and undescended testes. Exstrophy affects 1/30,000 newborns. The bladder opens against the abdominal wall in bladder exstrophy, a rare genitourinary condition. This study is vital to provide appropriate therapy choices as a basis to improve patient outcomes. This study may explain bladder exstrophy and provide treatment. Epispadias, secretory placenta, cloacal exstrophy, and other embryonic abnormalities comprise the exstrophy-spades complex. The mesenchymal layer does not migrate from the ectoderm and endoderm layers in the first trimester, affecting the cloacal membrane. Embryological problems define the exstrophy-aspidistra complex, which resembles epimedium, classic bladder, cloacal exstrophy, and other diseases. Urogenital ventral body wall anomalies expose the bladder mucosa, causing bladder exstrophy. Genetic mutations in the Hedgehog cascade pathway, Wnt signal, FGF, BMP4, Alx4, Gli3, and ISL1 cause ventral body wall closure and urinary bladder failure. External factors such as high maternal age, smoking moms, and high maternal body mass index have also been associated to bladder exstrophy. Valproic acid increases bladder exstrophy risk; chemicals and pollutants during pregnancy may increase bladder exstrophy risk. Bladder exstrophy has no identified cause despite these risk factors. Exstrophy reconstruction seals the bladder, improves bowel function, reconstructs the vaginal region, and restores urination.

2.
JBRA Assist Reprod ; 27(2): 147-155, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-35916458

ABSTRACT

OBJECTIVE: This study aimed to determine the effects of soybean (Glycine max) administration on ZP2 expression in female mice. METHODS: This research used Mus musculus, six-week-old female SWISS strain mice divided into three groups (group without soybean administration and groups with mixed feed with soybeans and pelleted 50:50 and 25:75). Soybean feed for mice was 360 grams per kilogram of mouse body weight for 2 weeks. The percentage of follicles was measured and analyzed using Hematoxylin-Eosin staining, and the expression of ZP2 was analyzed using immunohistochemistry. We assessed the data using one-way ANOVA and paired t-test using the SPSS 17. RESULTS: Some of the follicles in the ovaries do not develop until their final stage of follicle maturation. The administration of soybean before and after treatment in all groups was not significantly different, but the numbers of atretic follicles in groups 1 and 2 were significantly different. Soybean administration at a ratio of 50:50 has the effect of increasing the percentage of the ZP2 expression in tertiary follicles (p=0.001), whereas soybean administration at a ratio of 25:75 was not able to maintain or increase the formation of ZP2 in tertiary follicles (p=0.77). CONCLUSION: Soybean administration with a ratio of 50:50 significantly increased the percentage of the ZP2 expression in tertiary follicles.


Subject(s)
Glycine max , Ovary , Animals , Female , Mice , Ovarian Follicle
SELECTION OF CITATIONS
SEARCH DETAIL
...