Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831751

ABSTRACT

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Subject(s)
Diet, High-Fat , Lactic Acid , Obesity , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Tumor Microenvironment , Male , Animals , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Diet, High-Fat/adverse effects , Mice , Humans , Lactic Acid/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Obesity/metabolism , Obesity/pathology , Cell Line, Tumor , Mice, Inbred C57BL , Tumor-Associated Macrophages/metabolism
2.
Patterns (N Y) ; 4(6): 100728, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37409050

ABSTRACT

Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding genotype-phenotype associations across species is challenging due to the non-independence of species data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homologous regions and biological roles associated with quantitative phenotypes across species. In two case studies, CALANGO identified both known and previously unidentified genotype-phenotype associations. The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its integrated bacteriophages, and the pathogenicity phenotype. The second identified an association between maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding and increases genetic diversity, with implications for conservation biology and agriculture.

3.
iScience ; 26(3): 106108, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36852282

ABSTRACT

Many gene signatures have been developed by applying machine learning (ML) on omics profiles, however, their clinical utility is often hindered by limited interpretability and unstable performance. Here, we show the importance of embedding prior biological knowledge in the decision rules yielded by ML approaches to build robust classifiers. We tested this by applying different ML algorithms on gene expression data to predict three difficult cancer phenotypes: bladder cancer progression to muscle-invasive disease, response to neoadjuvant chemotherapy in triple-negative breast cancer, and prostate cancer metastatic progression. We developed two sets of classifiers: mechanistic, by restricting the training to features capturing specific biological mechanisms; and agnostic, in which the training did not use any a priori biological information. Mechanistic models had a similar or better testing performance than their agnostic counterparts, with enhanced interpretability. Our findings support the use of biological constraints to develop robust gene signatures with high translational potential.

4.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36752203

ABSTRACT

The genomic and immune landscapes of prostate cancer differ by self-identified race. However, few studies have examined the genome-wide copy number landscape and immune content of matched cohorts with genetic ancestry data and clinical outcomes. Here, we assessed prostate cancer somatic copy number alterations (sCNA) and tumor immune content of a grade-matched, surgically treated cohort of 145 self-identified Black (BL) and 145 self-identified White (WH) patients with genetic ancestry estimation. A generalized linear model adjusted with age, preoperative prostate-specific antigen (PSA), and Gleason Grade Group and filtered for germline copy number variations (gCNV) identified 143 loci where copy number varied significantly by percent African ancestry, clustering on chromosomes 6p, 10q, 11p, 12p, and 17p. Multivariable Cox regression models adjusted for age, preoperative PSA levels, and Gleason Grade Group revealed that chromosome 8q gains (including MYC) were significantly associated with biochemical recurrence and metastasis, independent of genetic ancestry. Finally, Treg density in BL and WH patients was significantly correlated with percent genome altered, and these findings were validated in the TCGA cohort. Taken together, our findings identify specific sCNA linked to genetic ancestry and outcome in primary prostate cancer and demonstrate that Treg infiltration varies by global sCNA burden in primary disease.


Subject(s)
Prostatic Neoplasms , Humans , Male , DNA Copy Number Variations , Neoplasm Grading , Proportional Hazards Models , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Racial Groups
5.
Genome Biol ; 24(1): 22, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36759904

ABSTRACT

Alternative polyadenylation (APA) is an important post-transcriptional mechanism that has major implications in biological processes and diseases. Although specialized sequencing methods for polyadenylation exist, availability of these data are limited compared to RNA-sequencing data. We developed REPAC, a framework for the analysis of APA from RNA-sequencing data. Using REPAC, we investigate the landscape of APA caused by activation of B cells. We also show that REPAC is faster than alternative methods by at least 7-fold and that it scales well to hundreds of samples. Overall, the REPAC method offers an accurate, easy, and convenient solution for the exploration of APA.


Subject(s)
High-Throughput Nucleotide Sequencing , Polyadenylation , High-Throughput Nucleotide Sequencing/methods , 3' Untranslated Regions , RNA, Messenger , Sequence Analysis, RNA/methods
6.
Leukemia ; 37(3): 627-635, 2023 03.
Article in English | MEDLINE | ID: mdl-36543879

ABSTRACT

Genetic predisposition (familial risk) in the myeloproliferative neoplasms (MPNs) is more common than the risk observed in most other cancers, including breast, prostate, and colon. Up to 10% of MPNs are considered to be familial. Recent genome-wide association studies have identified genomic loci associated with an MPN diagnosis. However, the identification of variants with functional contributions to the development of MPN remains limited. In this study, we have included 630 MPN patients and whole genome sequencing was performed in 64 individuals with familial MPN to uncover recurrent germline predisposition variants. Both targeted and unbiased filtering of single nucleotide variants (SNVs) was performed, with a comparison to 218 individuals with MPN unselected for familial status. This approach identified an ATM L2307F SNV occurring in nearly 8% of individuals with familial MPN. Structural protein modeling of this variant suggested stabilization of inactive ATM dimer, and alteration of the endogenous ATM locus in a human myeloid cell line resulted in decreased phosphorylation of the downstream tumor suppressor CHEK2. These results implicate ATM, and the DNA-damage response pathway, in predisposition to MPN.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Male , Ataxia Telangiectasia Mutated Proteins/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Germ Cells , Germ-Line Mutation , Myeloproliferative Disorders/genetics , Female
7.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36282572

ABSTRACT

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/genetics , Gene Regulatory Networks , Forkhead Box Protein O1/genetics
8.
Diagn Microbiol Infect Dis ; 104(4): 115789, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122486

ABSTRACT

We evaluated the performance of SARS-CoV-2 TaqMan real-time reverse-transcription PCR (RT-qPCR) assays (ThermoFisher) for detecting 2 nonsynonymous spike protein mutations, E484K and N501Y. Assay accuracy was evaluated by whole genome sequencing (WGS). Residual nasopharyngeal SARS-CoV-2 positive samples (N = 510) from a diverse patient population in New York City submitted for routine SARS-CoV-2 testing during January-April 2020 were used. We detected 91 (18%) N501Y and 101 (20%) E484K variants. Four samples (0.8%) were positive for both variants. The assay had nearly perfect concordance with WGS in the validation subset, detecting B.1.1.7 and B.1.526 variants among others. Sensitivity and specificity ranged from 0.95 to 1.00. Positive and negative predictive values were 0.98-1.00. TaqMan genotyping successfully predicted the presence of B.1.1.7, but had significantly lower sensitivity, 62% (95% CI, 0.53, 0.71), for predicting B.1.526 sub-lineages lacking E484K. This approach is rapid and accurate for detecting SARS-CoV-2 variants and can be rapidly implemented in routine clinical setting.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Testing , Polymorphism, Single Nucleotide , Genotype , COVID-19/diagnosis , Mutation
9.
Am J Transplant ; 22(12): 3111-3119, 2022 12.
Article in English | MEDLINE | ID: mdl-35979657

ABSTRACT

We report the transmission of acute myeloid leukemia (AML) undetected at donation from a deceased organ donor to two kidneys and one liver recipients. We reviewed the medical records, and performed molecular analyses and whole exome sequencing (WES) to ascertain AML donor origin and its molecular evolution. The liver recipient was diagnosed 11 months after transplantation and died from complications 2 months later. The two kidney recipients (R1 and R2) were diagnosed 19 and 20 months after transplantation and both received treatment for leukemia. R1 died of complications 11 months after diagnosis, while R2 went into complete remission for 44 months, before relapsing. R2 died 10 months later of complications from allogenic bone marrow transplantation. Microsatellite analysis demonstrated donor chimerism in circulating cells from both kidney recipients. Targeted molecular analyses and medical records revealed NPM1 mutation present in the donor and recipients, while FLT3 was mutated only in R1. These findings were confirmed by WES, which revealed additional founder and clonal mutations, and HLA genomic loss in R2. In conclusion, we report the first in-depth genomic analysis of AML transmission following solid organ transplantation, revealing distinct clonal evolution, and providing a potential molecular explanation for tumor escape.


Subject(s)
Leukemia, Myeloid, Acute , Organ Transplantation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Organ Transplantation/adverse effects , Tissue Donors
10.
Brain Pathol ; 32(1): e13007, 2022 01.
Article in English | MEDLINE | ID: mdl-34297428

ABSTRACT

Although most commonly benign, neurofibromas (NFs) can have devastating functional and cosmetic effects in addition to the possibility of malignant transformation. Orbitofacial NFs, in particular, may cause progressive, disfiguring tumors of the lid, brow, temple, face, and orbit, and clinical evidence suggests that they may have increased local aggressiveness compared to NFs developing at other sites. The purpose of this study was to identify biological differences between orbitofacial NFs and those occurring at other anatomic sites. We performed RNA-sequencing in orbitofacial (n = 10) and non-orbitofacial (n = 9) NFs. Differential gene expression analysis demonstrated that a variety of gene sets including genes involved in cell proliferation, interferon, and immune-related pathways were enriched in orbitofacial NF. Comparisons with publicly available databases of various Schwann cell tumors and malignant peripheral nerve sheath tumor (MPNST) revealed a significant overlap of differentially expressed genes between orbitofacial versus non-orbitofacial NF and plexiform NF versus MPNST. In summary, we identified gene expression differences between orbitofacial NF and NFs occurring at other locations. Further investigation may be warranted, given that orbitofacial NF are notoriously difficult to treat and associated with disproportionate morbidity.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma , Neurofibromatosis 1 , Cell Cycle/genetics , Humans , Inflammation/complications , Inflammation/genetics , Nerve Sheath Neoplasms/pathology , Neurofibroma/genetics , Neurofibroma/metabolism , Neurofibroma/pathology , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , RNA
11.
Genome Biol ; 22(1): 323, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34844637

ABSTRACT

We present recount3, a resource consisting of over 750,000 publicly available human and mouse RNA sequencing (RNA-seq) samples uniformly processed by our new Monorail analysis pipeline. To facilitate access to the data, we provide the recount3 and snapcount R/Bioconductor packages as well as complementary web resources. Using these tools, data can be downloaded as study-level summaries or queried for specific exon-exon junctions, genes, samples, or other features. Monorail can be used to process local and/or private data, allowing results to be directly compared to any study in recount3. Taken together, our tools help biologists maximize the utility of publicly available RNA-seq data, especially to improve their understanding of newly collected data. recount3 is available from http://rna.recount.bio .


Subject(s)
RNA Splicing , RNA-Seq/methods , RNA/genetics , Animals , Base Sequence , Computational Biology/methods , Exons , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Mice , Sequence Analysis, RNA/methods , Software
12.
BMC Cancer ; 21(1): 856, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34311724

ABSTRACT

BACKGROUND: PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa. METHODS: Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using the TCGA quantifications from the FC-R2 expression atlas. RESULTS: The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression. CONCLUSION: We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the immune system. These findings can help the development of new biomarkers and help guide therapy choices.


Subject(s)
Gene Expression Regulation, Neoplastic , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Transcriptome , Adaptive Immunity , Biomarkers, Tumor , Gene Expression Profiling , Humans , Immunity, Innate , Immunohistochemistry , Male , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/pathology , Transcriptional Regulator ERG/metabolism
13.
Database (Oxford) ; 20212021 05 15.
Article in English | MEDLINE | ID: mdl-33991092

ABSTRACT

Since the beginning of the coronavirus disease-2019 (COVID-19) pandemic in 2020, there has been a tremendous accumulation of data capturing different statistics including the number of tests, confirmed cases and deaths. This data wealth offers a great opportunity for researchers to model the effect of certain variables on COVID-19 morbidity and mortality and to get a better understanding of the disease at the epidemiological level. However, in order to draw any reliable and unbiased estimate, models also need to take into account other variables and metrics available from a plurality of official and unofficial heterogenous resources. In this study, we introduce covid19census, an R package that extracts from many different repositories and combines together COVID-19 metrics and other demographic, environment- and health-related variables of the USA and Italy at the county and regional levels, respectively. The package is equipped with a number of user-friendly functions that dynamically extract the data over different timepoints and contains a detailed description of the included variables. To demonstrate the utility of this tool, we used it to extract and combine different county-level data from the USA, which we subsequently used to model the effect of diabetes on COVID-19 mortality at the county level, taking into account other variables that may influence such effects. In conclusion, it was observed that the 'covid19census' package allows to easily extract area-level data from both the USA and Italy using few functions. These comprehensive data can be used to provide reliable estimates of the effect of certain variables on COVID-19 outcomes. Database URL: https://github.com/c1au6i0/covid19census.


Subject(s)
COVID-19/epidemiology , Databases, Factual , Datasets as Topic , Pandemics , SARS-CoV-2 , Algorithms , Comorbidity , Demography , Diabetes Mellitus/mortality , Health Surveys , Humans , Italy/epidemiology , Models, Theoretical , Software , United States/epidemiology
14.
Vaccines (Basel) ; 9(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923159

ABSTRACT

The COVID-19 mortality rate is higher in the elderly and in those with pre-existing chronic medical conditions. The elderly also suffer from increased morbidity and mortality from seasonal influenza infections; thus, an annual influenza vaccination is recommended for them. In this study, we explore a possible county-level association between influenza vaccination coverage in people aged 65 years and older and the number of deaths from COVID-19. To this end, we used COVID-19 data up to 14 December 2020 and US population health data at the county level. We fit quasi-Poisson regression models using influenza vaccination coverage in the elderly population as the independent variable and the COVID-19 mortality rate as the outcome variable. We adjusted for an array of potential confounders using different propensity score regression methods. Results show that, on the county level, influenza vaccination coverage in the elderly population is negatively associated with mortality from COVID-19, using different methodologies for confounding adjustment. These findings point to the need for studying the relationship between influenza vaccination and COVID-19 mortality at the individual level to investigate any underlying biological mechanisms.

15.
Nat Commun ; 12(1): 935, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568675

ABSTRACT

Black men die more often of prostate cancer yet, interestingly, may derive greater survival benefits from immune-based treatment with sipuleucel-T. Since no signatures of immune-responsiveness exist for prostate cancer, we explored race-based immune-profiles to identify vulnerabilities. Here we show in multiple independent cohorts comprised of over 1,300 patient samples annotated with either self-identified race or genetic ancestry, prostate tumors from Black men or men of African ancestry have increases in plasma cell infiltrate and augmented markers of NK cell activity and IgG expression. These findings are associated with improved recurrence-free survival following surgery and nominate plasma cells as drivers of prostate cancer immune-responsiveness.


Subject(s)
Plasma Cells/immunology , Prostatic Neoplasms/immunology , Black or African American/genetics , Aged , Cell Movement , Cohort Studies , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Male , Middle Aged , Prostate/immunology , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/physiopathology
16.
Genome Res ; 30(7): 1060-1072, 2020 07.
Article in English | MEDLINE | ID: mdl-32718982

ABSTRACT

Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.


Subject(s)
RNA, Long Noncoding/physiology , Cell Growth Processes/genetics , Cell Movement/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , KCNQ Potassium Channels/metabolism , Molecular Sequence Annotation , Oligonucleotides, Antisense , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering
17.
medRxiv ; 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32607525

ABSTRACT

COVID-19 mortality rate is higher in the elderly and in those with preexisting chronic medical conditions. The elderly also suffer from increased morbidity and mortality from seasonal influenza infection, and thus annual influenza vaccination is recommended for them. In this study, we explore a possible area-level association between influenza vaccination coverage in people aged 65 years and older and the number of deaths from COVID-19. To this end, we used COVID-19 data until June 10, 2020 together with population health data for the United States at the county level. We fit quasi-Poisson regression models using influenza vaccination coverage in the elderly population as the independent variable and the number of deaths from COVID-19 as the outcome variable. We adjusted for a wide array of potential confounding variables using both county-level generalized propensity scores for influenza vaccination rates, as well as direct adjustment. Our results suggest that influenza vaccination coverage in the elderly population is negatively associated with mortality from COVID-19. This finding is robust to using different analysis periods, different thresholds for inclusion of counties, and a variety of methodologies for confounding adjustment. In conclusion, our results suggest a potential protective effect of the influenza vaccine on COVID-19 mortality in the elderly population. The significant public health implications of this possibility point to an urgent need for studying the relationship between influenza vaccination and COVID-19 mortality at the individual level, to investigate both the epidemiology and any underlying biological mechanism.

18.
Acta Neuropathol Commun ; 8(1): 62, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366326

ABSTRACT

Although most commonly benign, neurofibromas (NFs) can have devastating functional and cosmetic effects in addition to the possibility of malignant transformation. In orbitofacial neurofibromatosis type 1, NFs may cause progressive, disfiguring tumors of the lid, brow, temple, face and orbit. The purpose of this study was to identify biological differences between orbitofacial NFs and those occurring at other anatomic sites. We used Illumina Methylation EPIC BeadChip to study DNA methylation differences between orbitofacial NFs (N = 20) and NFs at other sites (N = 4). Global methylation differences were detected between the two groups and the top differentially methylated genes were part of the HOX (Homebox) family of transcription factors (HOXC8, HOXC4, HOXC6, HOXA6 and HOXD4), which were hypomethylated in orbitofacial NFs compared to the non-orbital NFs. Conversely, LTF (lactoferrin) was relatively hypermethylated in orbitofacial NF compared to non-orbitofacial NF. HOXC8 protein levels were higher in orbitofacial plexiform NFs (p = 0.04). We found no significant differences in the expression of HOXC4, HOXA6, or HOXD4 between the two groups. HOXC8 mRNA levels were also higher in orbitofacial NFs and HOXC8 overexpression in a non-neoplastic human Schwann cell line resulted in increased growth. In summary, we identified gene methylation and expression differences between orbitofacial NF and NFs occurring at other locations. Further investigation may be warranted, given that the HOX family of genes play an important role during development, are dysregulated in a variety of cancers, and may provide novel insights into therapeutic approaches.


Subject(s)
Facial Neoplasms/genetics , Homeodomain Proteins/genetics , Neurofibromatosis 1/genetics , Orbital Neoplasms/genetics , DNA Methylation/genetics , Facial Neoplasms/pathology , Humans , Neurofibromatosis 1/pathology , Orbital Neoplasms/pathology , Retrospective Studies , Transcription Factors/genetics , Transcriptome
19.
Acta Neuropathol Commun ; 8(1): 69, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32410671

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

20.
Genome Res ; 30(7): 1073-1081, 2020 07.
Article in English | MEDLINE | ID: mdl-32079618

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive of over 109,000 coding and noncoding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhancer lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.


Subject(s)
Transcriptome , Databases, Genetic , Enhancer Elements, Genetic , Gene Expression Profiling , Genome, Human , Humans , Neoplasms/genetics , Organ Specificity , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...