Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 131(16): 5930-4, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-19334729

ABSTRACT

A novel thiocyanate-free cyclometalleted ruthenium sensitizer for solar cells is designed and developed. Upon anchoring to nanocrystalline TiO(2) films, it exhibits a remarkable incident monochromatic photon-to-current conversion efficiency of 83%. The solar cell employing a liquid-based electrolyte exhibits a short circuit photocurrent density of 17 mA/cm(2), an open circuit voltage of 800 mV, and a fill factor of 0.74, corresponding to an overall conversion efficiency of 10.1% at standard AM 1.5 sunlight. To understand the structural, electronic, and optical properties of the cyclometalleted ruthenium sensitizer, we have investigated using density functional theory (DFT) and time-dependent DFT (TDDFT). Our results show the HOMO is located mostly on ruthenium and cyclometalated ligand, while the LUMO is on 4-carboxylic acid-4'-carboxylate-2,2'-bipyridine. Molecular orbitals analysis confirmed the experimental assignment of redox potentials, and TDDFT calculations allowed assignment of the visible absorption bands. The present findings provide new design criteria for the next generation of ruthenium sensitizers and help foster widespread interest in the engineering of new sensitizers that interact effectively with the I(-)/I(3)(-) redox couple.

2.
J Colloid Interface Sci ; 330(1): 138-43, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19007937

ABSTRACT

The isoelectric points (IEPs) of two zwitterions, glycine and both-terminals-terminated poly(ethylene glycol) (NH(2)-PEG-COOH), were determined from the titration curves, and the thicknesses of zwitterion layers immobilized on titanium (Ti) with immersion and electrodeposition at various pH based on IEPs were evaluated with ellipsometry to investigate the effect of pH and the immobilization technique on the interactions between the zwitterions and the Ti surface. From the titration curves, pK(1), pK(2), and the IEP of glycine were determined as 2.8, 8.9, and 5.9, respectively, and pK(1), pK(2), and the IEP of NH(2)-PEG-COOH were determined as 2.1, 11.7, and 6.9, respectively. At a certain specific pH, (+)H(3)N-CH(2)-COO(-) or (+)H(3)N-PEG-COO(-) was formed by hydrolysis of glycine or NH(2)-PEG-COOH. In addition, the Ti surface was negatively charged at this pH. As a result, for immersion, the electrostatic reactivity between terminal groups of zwitterions and hydroxyl groups on the Ti surface was the highest and the thickness of the immobilized layer was significantly the largest at pH 12. For electrodeposition, glycine, with its lower molecular weight, was more easily attracted to the Ti surface than NH(2)-PEG-COOH, which has a higher molecular weight, while the thickness of the immobilized layer was the greatest at pH 12 in both zwitterions.


Subject(s)
Glycine/chemistry , Polyethylene Glycols/chemistry , Titanium/chemistry , Hydrogen-Ion Concentration , Ions , Isoelectric Point , Static Electricity
3.
J Phys Chem B ; 110(50): 25210-21, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17165965

ABSTRACT

Impedance spectroscopy was applied to investigate the characteristics of dye-sensitized nanostructured TiO2 solar cells (DSC) with high efficiencies of light to electricity conversion of 11.1% and 10.2%. The different parameters, that is, chemical capacitance, steady-state transport resistance, transient diffusion coefficient, and charge-transfer (recombination) resistance, have been interpreted in a unified and consistent framework, in which an exponential distribution of the localized states in the TiO2 band gap plays a central role. The temperature variation of the chemical diffusion coefficient dependence on the Fermi-level position has been observed consistently with the standard multiple trapping model of electron transport in disordered semiconductors. A Tafel dependence of the recombination resistance dependence on bias potential has been rationalized in terms of the charge transfer from a distribution of surface states using the Marcus model of electron transfer. The current-potential curve of the solar cells has been independently constructed from the impedance parameters, allowing a separate analysis of the contribution of different resistive processes to the overall conversion efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...