Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702742

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Subject(s)
Antibodies, Monoclonal , Chemokine CX3CL1 , Disease Models, Animal , Graft vs Host Disease , Pulmonary Fibrosis , Scleroderma, Systemic , Skin , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Fibrosis , Female , Mice, Inbred C57BL , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology
2.
J Toxicol Pathol ; 37(2): 93-97, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584970

ABSTRACT

This study aimed to establish an exposure method that can induce homogeneous lesions with minimal inter-individual variability. The distribution of lesions induced by bleomycin (BLM) administration was also analyzed. C57BL mice were intrabronchially administered 20 µL of BLM (3 mg/mL) using a bronchoscope in the left or right bronchus. The mice were sacrificed 14 days after administration, and their lungs were evaluated histopathologically. BLM-induced inflammatory lesions were widely observed in the lungs. In the left bronchus-treated group, lesions were uniformly observed throughout the lobe, and no individual differences were noted. Meanwhile, in the right bronchus-treated group, individual differences in the distribution of the pulmonary lesions were observed. The distribution of lesions differed among the four lobes of the right lung owing to their anatomical features. Administration into the left bronchus is recommended for highly homogeneous lung exposure and for establishing models that contribute to highly accurate toxicity and efficacy evaluations.

3.
J Gastroenterol ; 59(3): 250-262, 2024 03.
Article in English | MEDLINE | ID: mdl-38242997

ABSTRACT

BACKGROUND: Recent evidence suggests that the presence of microbiome within human pancreatic ductal adenocarcinoma (PDAC) tissue potentially influences cancer progression and prognosis. However, the significance of tumor-resident microbiome remains unclear. We aimed to elucidate the impact of intratumoral bacteria on the pathophysiology and prognosis of human PDAC. METHODS: The presence of intratumoral bacteria was assessed in 162 surgically resected PDACs using quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) targeting 16S rRNA. The intratumoral microbiome was explored by 16S metagenome sequencing using DNA extracted from formalin-fixed paraffin-embedded tissues. The profile of intratumoral bacteria was compared with clinical information, pathological findings including tumor-infiltrating T cells, tumor-associated macrophage, fibrosis, and alterations in four main driver genes (KRAS, TP53, CDKN2A/p16, SMAD4) in tumor genomes. RESULTS: The presence of intratumoral bacteria was confirmed in 52 tumors (32%) using both qPCR and ISH. The 16S metagenome sequencing revealed characteristic bacterial profiles within these tumors, including phyla such as Proteobacteria and Firmicutes. Comparison of bacterial profiles between cases with good and poor prognosis revealed a significant positive correlation between a shorter survival time and the presence of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus. The abundance of these bacteria was correlated with a decrease in the number of tumor-infiltrating T cells positive for CD4, CD8, and CD45RO. CONCLUSIONS: Intratumoral infection of anaerobic bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus is correlated with the suppressed anti-PDAC immunity and poor prognosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , RNA, Ribosomal, 16S , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Prognosis
4.
J Gastroenterol ; 58(10): 1055-1067, 2023 10.
Article in English | MEDLINE | ID: mdl-37477731

ABSTRACT

BACKGROUND: Abundant collagen deposition is a hallmark of pancreatic ductal adenocarcinomas (PDACs). This study clarified the interactive relationship between tumor-stromal collagen, molecular and immune characteristics, and tumor pr ogression in human PDAC. METHODS: We performed a comprehensive examination using an integrative molecular pathological epidemiology database on 169 cases with resected PDAC . The amount of tumor-stromal collagen was quantified through digital imaging analysis for Elastica van Gieson-stained whole-section tumor slides. We analyzed the association of tumor-stromal collagen with gene alterations (KRAS, TP53, CDKN2A/p16, and SMAD4), immune parameters (CD4+ tumor-infiltrating lymphocytes [TILs], CD8+ TILs, FOXP3+ TILs, and tertiary lymphoid structures), and patient prognosis. RESULTS: Low amounts of tumor-stromal collagen were associated with poor differentiation (multivariable OR = 3.82, 95%CI = 1.41-12.2, P = 0.008) and CDKN2A/p16 alteration (OR [95%CI] = 2.06 [1.08-4.02], P = 0.03). Tumors with low collagen levels had shorter overall survival (HR [95%CI] = 2.38 [1.59-3.56], P < 0.0001). In the S-1 and gemcitabine (GEM) treatment groups, low tumor-stromal collagen was linked to poor prognosis of patients with PDAC (S-1 group: multivariable HR [95%CI] = 2.76 [1.36-5.79], P = 0.005; GEM group: multivariate HR [95%CI] = 2.91 [1.34-6.71], P = 0.007). Additionally, low amounts of tumor-stromal collagen were also linked to low levels of CD4+ TILs (P = 0.046), CD8+ TILs (P = 0.09), and tertiary lymphoid structures (P = 0.001). CONCLUSIONS: Tumor-stromal collagen deposition may play a crucial role in modulating tumor-immune microenvironment and determining response to adjuvant chemotherapy and patient survival outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tertiary Lymphoid Structures , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Prognosis , Lymphocytes, Tumor-Infiltrating/pathology , Collagen , Tumor Microenvironment , Pancreatic Neoplasms
5.
Sci Rep ; 13(1): 8511, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231035

ABSTRACT

Patient-derived xenograft (PDX) tumor models are known to maintain the genomic and phenotypic profiles, including the histopathological structures, of the parental tumors. On the other hand, unique enrichment of single-nucleotide variants or copy number aberrations has been reported in several types of tumors. However, an understanding of endometrial carcinoma PDXs is limited. The purpose of the present study was to clarify the presence or absence of the molecular properties of endometrial carcinomas in PDXs passaged up to eight times. Established PDXs of endometrioid carcinomas maintained their histopathological characteristics, but those of carcinosarcomas predominantly consisted of sarcomatous components when compared to the parental tumors. Alterations in the proportion of cells with positive/negative immunohistochemical staining for estrogen receptor, PTEN, PAX8, and PAX2 were observed, whereas the proportions of cells with AE1/AE3, TP53, ARID1A, PMS2, and MSH6 staining were unchanged. Variants of cancer-associated genes were compared between PDXs and parental tumors. Mutations in POLE and a frameshift deletion in BRCA1 were observed in the parental tumor tissue in each of the six cases, and additional genomic alterations, which were not apparently related to histopathological and immunohistochemical alterations, were found in the PDXs of these cases. The genomic and phenotypic alterations observed between endometrial carcinoma PDXs and parental tumors were partly associated with endometrial cancer-specific characteristics related to cellular differentiation and gene mutations.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Female , Humans , Heterografts , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Carcinoma, Endometrioid/pathology , Mutation
6.
Mol Ther Nucleic Acids ; 31: 339-351, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36789273

ABSTRACT

Complement component 5 (C5), an important molecule in the complement cascade, blockade by antibodies shows clinical efficacy in treating complement-mediated disorders. However, insufficient blockading induced by single-nucleotide polymorphisms in the C5 protein or frequent development of "breakthrough" intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria treated with eculizumab have been reported. Herein, we developed a lipid nanoparticle (LNP)-formulated siRNA targeting C5 that was efficiently delivered to the liver and silenced C5 expression. We identified a potent C5-siRNA with an in vitro IC50 of 420 pM and in vivo ED50 of 0.017 mg/kg following a single administration. Single or repeated administrations of the LNP-formulated C5-siRNA allowed robust and durable suppression of liver C5 expression in mice. Complement C5 silencing ameliorated C5b-dependent anti-acetylcholine receptor antibody-induced myasthenia gravis and C5a-dependent collagen-induced arthritis symptoms. Similarly, in nonhuman primates, a single administration of C5-siRNA/LNP-induced dose-dependent plasma C5 suppression and concomitantly inhibited serum complement activity; complement activity recovered to the pre-treatment levels at 65 days post administration, thus indicating that the complement activity can be controlled for a specific period. Our findings provide the foundation for further developing C5-siRNA delivered via LNPs as a potential therapeutic for complement-mediated diseases.

7.
J Toxicol Sci ; 48(1): 25-35, 2023.
Article in English | MEDLINE | ID: mdl-36599425

ABSTRACT

Methylthioacetic acid (MTA) is an acid-hydrolyzed derivative of a natural aroma compound, methylthioacetic acid ethyl ester isolated from Cucumis melo var. conomon (Katsura-uri, Japanese Picking Melon), and induces a villiform-like structure dome in RCM-1 human colorectal cancer cell culture. Thus far, the physiological and molecular properties of MTA-mediated dome formation remain unknown. Herein, MTA (not more than 2 mM) was demonstrated to differentiate the unorganized cell mass into the dome in RCM-1 cell culture by disclosing the correlation between dome formation and several intestinal differentiation markers such as alkaline phosphatase activity and the protein levels of dipeptidyl peptidase 4, villin, and Krüppel-like factor 4. Dome formation in RCM-1 cell culture was additively enhanced by the simultaneous administration of MTA and butyric acid (BA), suggesting that MTA directs the differentiation of RCM-1 cells, potentially through the same or similar pathway(s) shared with BA. Notably, a high dose of MTA (2 mM or more) elevated several apoptosis markers, such as DNA fragmentation, caspase-3/7 activity, and cleavage of poly(ADP-ribose) polymerase. Altogether, in addition to RCM-1 cell differentiation, MTA triggers apoptosis. These results indicate that MTA is a potential anticarcinogenic agent applicable in differentiation therapy and traditional chemotherapy against colorectal cancers.


Subject(s)
Colorectal Neoplasms , Cucumis melo , Humans , Cucumis melo/chemistry , Cucumis melo/genetics , Cucumis melo/metabolism , Odorants , Organic Chemicals , Cell Differentiation , Apoptosis
8.
Mod Rheumatol ; 34(1): 45-49, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-36680420

ABSTRACT

OBJECTIVES: The objective of the study is to evaluate the long-term safety and efficacy of E6011, a humanized anti-fractalkine monoclonal antibody, in patients with rheumatoid arthritis with an inadequate response to biological disease-modifying antirheumatic drugs. METHODS: In the double-blind treatment phase (24 weeks), placebo or E6011 400 mg was administered until Week 10. Thereafter, E6011 200 mg or 400 mg was administered to Week 22. Subjects who completed the evaluation at Week 24 of the treatment phase were rolled over into the extension phase. The extension phase lasted until Week 104, and all subjects received E6011 400 mg or 200 mg every 2 weeks in an open-label manner until Week 102. RESULTS: A total of 47 subjects completed the double-blind treatment phase and were rolled over into the extension phase. In total, 46 (97.9%) subjects experienced any adverse events, and the incidence of treatment-related adverse events was 57.4%. No clear efficacy trend in the American College of Rheumatology 20% response rates was observed. CONCLUSIONS: E6011 was well tolerated in active rheumatoid arthritis patients who had shown an inadequate response to biologic disease-modifying antirheumatic drugs, but no clear benefit in the American College of Rheumatology 20% response rates was observed. Further studies are needed to clarify the clinical benefit of E6011.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Antirheumatic Agents/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Arthritis, Rheumatoid/drug therapy , Drug Therapy, Combination , Double-Blind Method , Treatment Outcome
9.
Mod Rheumatol ; 34(1): 37-44, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-36680426

ABSTRACT

OBJECTIVES: To evaluate the long-term safety and efficacy of E6011, a humanized anti-fractalkine monoclonal antibody, in patients with rheumatoid arthritis (RA) with an inadequate response to methotrexate (MTX). METHODS: Active RA patients with an inadequate response to MTX were randomly assigned to the E6011 or placebo group and received the study drug subcutaneously every 2 weeks during a 24-week double-blind study period. Subjects who completed evaluations at Week 24 were rolled over into the extension phase and received open-label E6011 (200 or 400 mg) every 2 weeks until Week 102. The safety analysis was conducted up to Week 104, and the efficacy analysis was conducted up to Week 84. RESULTS: A total of 169 subjects completed the double-blind treatment phase and were rolled over into the extension phase. In total, 167 (98.8%) subjects experienced any adverse events, and the incidence of treatment-related adverse events was 56.2%. The American College of Rheumatology 20 response rates were observed between 40 and 70% during the extension phase. CONCLUSIONS: E6011 was safe and well tolerated with no notable safety concerns up to 102 weeks in RA patients with an inadequate response to MTX.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Methotrexate , Antirheumatic Agents/adverse effects , Treatment Outcome , Arthritis, Rheumatoid/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Drug Therapy, Combination , Double-Blind Method
10.
Nutr Cancer ; 75(2): 713-725, 2023.
Article in English | MEDLINE | ID: mdl-36263881

ABSTRACT

High-fat intake by young Asian women impacts the risk of breast cancer. Understanding the underlying molecular mechanisms may be essential for disease prevention in Asia as well as globally. We aimed to examine the effects of corn oil- and animal fat-based high-fat diets (32.9 and 31.4%, respectively, of fat energy ratio as compared to 12.3% in the standard diet) on mammary carcinogenesis and alterations in gene expression and epigenetic statuses in the mammary gland during the growth stages in a rat model. An increased incidence of carcinomas was observed after the cessation of high-fat feeding. In addition, rapid tumor growth and elevations in Celsr2 expression, which may be a result of DNA hypomethylation patterns in the 3' untranslated region of the gene were noted in the animal fat group. In the human breast carcinoma cell line MCF7, a marginal decrease in cell viability was observed following the knockdown of Celsr2, suggesting that the animal fat-associated risk of cancer is partly due to the deregulation of mammary cell proliferation via non-metabolic gene functions. The present results will contribute to the development of strategies for controlling the food-associated risk of breast cancer, particularly in younger age groups.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Experimental , Rats , Humans , Female , Animals , Diet, High-Fat/adverse effects , Breast Neoplasms/etiology , Breast Neoplasms/complications , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Incidence , Cell Proliferation , Dietary Fats/adverse effects , Cadherins , Receptors, G-Protein-Coupled
11.
Mol Cancer Ther ; 22(1): 12-24, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36279567

ABSTRACT

Innate and adaptive resistance to cancer therapies, such as chemotherapies, molecularly targeted therapies, and immune-modulating therapies, is a major issue in clinical practice. Subpopulations of tumor cells expressing the receptor tyrosine kinase AXL become enriched after treatment with antimitotic drugs, causing tumor relapse. Elevated AXL expression is closely associated with drug resistance in clinical samples, suggesting that AXL plays a pivotal role in drug resistance. Although several molecules with AXL inhibitory activity have been developed, none have sufficient activity and selectivity to be clinically effective when administered in combination with a cancer therapy. Here, we report a novel small molecule, ER-851, which is a potent and highly selective AXL inhibitor. To investigate resistance mechanisms and identify driving molecules, we conducted a comprehensive gene expression analysis of chemoresistant tumor cells in mouse xenograft models of genetically engineered human lung cancer and human triple-negative breast cancer. Consistent with the effect of AXL knockdown, cotreatment of ER-851 and antimitotic drugs produced an antitumor effect and prolonged relapse-free survival in the mouse xenograft model of human triple-negative breast cancer. Importantly, when orally administered to BALB/c mice, this compound did not induce retinal toxicity, a known side effect of chronic MER inhibition. Together, these data strongly suggest that AXL is a therapeutic target for overcoming drug resistance and that ER-851 is a promising candidate therapeutic agent for use against AXL-expressing antimitotic-resistant tumors.


Subject(s)
Antimitotic Agents , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Axl Receptor Tyrosine Kinase , Antimitotic Agents/pharmacology , Proto-Oncogene Proteins/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
12.
JBMR Plus ; 6(10): e10680, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36248274

ABSTRACT

The chemokine fractalkine (FKN) is produced by various cell types, including osteoblasts and endothelial cells in bone tissue, and signals through a sole receptor, CX3CR1, which is expressed on monocytes/macrophages, including osteoclast precursors (OCPs). However, the direct effects of FKN signaling on osteoclast lineage cells under homeostatic noninflammatory conditions remain unclear. Here, we report that FKN regulates mouse OCP survival and primes OCPs for subsequent osteoclast differentiation. Wild-type but not CX3CR1-deficient OCPs grown on immobilized FKN showed enhanced osteoclast formation following receptor activator of NF-κB ligand (RANKL) stimulation, with increased expression of osteoclast differentiation markers. Interestingly, the growth of OCPs on immobilized FKN increased the expression of Cx3cr1 and Tnfrsf11a (Rank) transcripts, but following RANKL stimulation, OCPs rapidly downregulated Cx3cr1 expression. Consistently, anti-FKN monoclonal antibody (mAb) treatment attenuated RANKL-induced osteoclast formation on immobilized FKN before, but not during, RANKL stimulation. CX3CR1 and RANK proteins were highly expressed on bone marrow-derived CD11bhigh CD115+ OCPs. Growth on immobilized FKN prior to RANKL stimulation also increased CD11bhigh CD115+ OCP number and their survival and differentiation potential. In a RANKL-based mouse model of bone loss, anti-FKN mAb pretreatment significantly inhibited RANKL-dependent bone loss. Thus, blocking the FKN-CX3CR1 axis could represent a therapeutic option in noninflammatory bone loss diseases. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
J Toxicol Pathol ; 35(3): 211-223, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35832903

ABSTRACT

Recently, we introduced an organoid-based chemical carcinogenesis model using mouse normal tissue-derived organoids. In the present review article, the histopathological and immunohistochemical characteristics of mouse normal tissue-derived organoids and tumors derived from these organoids after their in vitro treatment with genotoxic carcinogens and injection into nude mouse are reviewed. In organoids treated in vitro with genotoxic carcinogens, we confirmed macroscopic tumorigenicity and histopathological findings, including neoplastic characteristics, such as multilayered epithelia and/or invasion of epithelia into the surrounding interstitium. In contrast glandular/cystic structures with monolayered epithelia were clearly demarcated from the surrounding Matrigel/interstitium in the untreated control groups. In addition to macroscopic tumorigenicity, these microscopic epithelial changes, which are characteristic of the early stages of carcinogenesis, are included in the requirements for carcinogenicity-positive judgement of the organoid-based carcinogenesis model. Immunohistochemistry of cytokeratins (CKs), used to determine the origin of epithelia and distribution of extraductal invasive lesions, or oncogenic kinases, which reflect molecular activation in epithelia following chemical treatment, is helpful for accurate diagnosis and molecular evaluation in the early stages of carcinogenesis. This information improves our biological understanding of organoid-based chemical carcinogenesis models.

15.
Oncol Lett ; 24(1): 221, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35707761

ABSTRACT

Colorectal cancer (CRC) harbors genetic alterations in a component of the Wnt signaling pathway in ~90% of cases. In addition, the Wnt signaling pathway has been previously suggested to serve a notable role in the pathophysiology of CRC cells and cancer-associated fibroblasts (CAFs). In the present study, the possible effects of E7386, a selective inhibitor of the interaction between ß-catenin and the cAMP response element-binding protein-binding protein, were evaluated using organoids and the corresponding CAFs derived from patients with CRC. E7386 at 100 nM was revealed to decrease the viability of CRC organoids and CAFs. Analysis of the gene expression profiles revealed marked changes in the expression levels of different types of cancer-associated genes associated with E7386 concentrations in the organoids and/or CAFs, such as those regulating glucose and amino acid metabolism [phosphoenolpyruvate carboxykinase 2, asparagine synthetase (glutamine-hydrolyzing), phosphoserine aminotransferase 1 and phosphoglycerate dehydrogenase], stimulation of natural killer cell-mediated cytotoxicity (UL16-binding protein 1) and modification of the Wnt/ß-catenin signaling pathway (indicated by very low density lipoprotein receptor). Results of the hydrophilic metabolome analysis in the organoids were consistent with those of the transcriptomic analysis. In vivo experiments used corresponding xenograft models, although changes in volume of tumor tissues could not be observed at 50 mg/kg body weight twice a day for 14 days, results on the protein expression levels partially supported those in the in vitro experiments. In conclusion, different types of reactions, such as alterations in the glucose and amino acid metabolic pathways, stimulation of stress responses and NK-cell mediated cytotoxicity and components in the Wnt/ß-catenin signaling pathway, to E7386 in the CRC organoids and corresponding CAFs were observed under conditions with decreased cell viability. However, further mechanistic studies to clarify the relationships with Wnt/ß-catenin signaling pathway and these reactions using preclinical models and biomarker studies using clinical human samples are required for verification of the present preclinical biomarkers.

16.
Transplantation ; 106(12): 2338-2347, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35749284

ABSTRACT

BACKGROUND: Prophylaxis of antibody-mediated rejection (AMR) caused by donor-specific antibodies remains challenging. Given the critical roles of complement activity in antibody-mediated graft injury, we developed a lipid nanoparticle (LNP) formulation of small-interfering RNA against complement C5 (C5 siRNA-LNP) and investigated whether C5 siRNA-LNP could downregulate the complement activity and act as an effective treatment for AMR. METHODS: Lewis recipient rats were sensitized by skin grafting from Brown Norway donor rats. Kidney transplantation was performed at 4 wk post-skin grafting.C5 siRNA- or control siRNA-LNP was administered intravenously, and the weekly injections were continued until the study's conclusion. Cyclosporin (CsA) and/or deoxyspergualin (DSG) were used as adjunctive immunosuppressants. Complement activity was evaluated using hemolysis assays. The deposition of C5b9 in the grafts was evaluated using immunohistochemical analysis on day 7 posttransplantation. RESULTS: C5 siRNA-LNP completely suppressed C5 expression and complement activity (hemolytic activity ≤ 20%) 7 d postadministration. C5 siRNA-LNP in combination with CsA and DSG (median survival time: 56.0 d) prolonged graft survival compared with control siRNA-LNP in combination with CsA and DSG (median survival time: 21.0 d; P = 0.0012; log-rank test). Immunohistochemical analysis of the grafts revealed that downregulation of C5 expression was associated with a reduction in C5b9-positive area ( P = 0.0141, Steel-Dwass test). CONCLUSIONS: C5 siRNA-LNP combined with immunosuppressants CsA and DSG downregulated C5 activity and significantly prolonged graft survival compared with control siRNA-LNP with CsA and DSG. Downregulation of C5 expression using C5 siRNA-LNP may be an effective therapeutic approach for AMR.


Subject(s)
Complement C5 , Graft Survival , Kidney Transplantation , RNA, Small Interfering , Animals , Rats , Antibodies , Graft Rejection/prevention & control , Immunosuppressive Agents/pharmacology , Rats, Inbred Lew , RNA, Small Interfering/genetics
17.
Transpl Int ; 35: 10157, 2022.
Article in English | MEDLINE | ID: mdl-35185378

ABSTRACT

Transplantation outcomes are affected by the increase in rejection associated with ischemia reperfusion injury (IRI). Fractalkine (FKN), a chemokine for recruitment of CX3CR1+ leukocytes, contributes to the pathogenesis of various inflammatory diseases. Herein, we evaluated the importance of the FKN-CX3CR1 axis during IRI-related rejections using a mouse heterotopic heart transplantation model. FKN expression and graft survival was compared between wild-type C57BL/6 recipients transplanted with BALB/c hearts preserved for 8 (WT-IRI) and 0.5 h (WT-control) at 4°C. Graft survival of WT-IRI was shorter than that of WT-control. FKN was expressed on the vascular endothelium in WT-IRI allografts, but minimally in WT-control. The role of the FKN-CX3CR1 axis in IRI-related rejection was directly investigated using the transplant model with CX3CR1-deficient recipients (CX3CR1 KO-IRI) or treatment with anti-mouse FKN monoclonal antibodies. Graft survival of CX3CR1 KO-IRI was longer than that of WT-IRI; antibody treatment prolonged graft survival. The contribution of CX3CR1+ monocytes to IRI-related rejection was evaluated by adoptive transfer to CX3CR1 KO-IRI. Adoptive transfer of CX3CR1+ monocytes attenuated the effect of prolonged graft survival in CX3CR1 KO-IRI. Overall, the FKN-CX3CR1 axis plays a major role during IRI-related rejection; its blockade has the potential to improve the outcomes of deceased donor transplantation.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Graft Rejection , Heart Transplantation , Reperfusion Injury , Adoptive Transfer , Allografts , Animals , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Graft Survival , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes
18.
PLoS One ; 17(1): e0262263, 2022.
Article in English | MEDLINE | ID: mdl-35030204

ABSTRACT

PURPOSE: We examined the cardiorespiratory effect of dexmedetomidine, an α2- adrenoceptor/imidazoline 1 (I1) receptor agonist, in spontaneously breathing adult rats. METHODS: Male rats (226-301 g, n = 49) under isoflurane anesthesia had their tail vein cannulated for drug administration and their tail artery cannulated for analysis of mean arterial pressure (MAP), pulse rate (PR), and arterial blood gases (PaO2, PaCO2, pH). After recovery, one set of rats received normal saline for control recording and was then divided into three experimental groups, two receiving dexmedetomidine (5 or 50 µg·kg-1) and one receiving normal saline (n = 7 per group). Another set of rats was divided into four groups receiving dexmedetomidine (50 µg·kg-1) followed 5 min later by 0.5 or 1 mg∙kg-1 atipamezole (selective α2-adrenoceptor antagonist) or efaroxan (α2-adrenoceptor/I1 receptor antagonist) (n = 6 or 8 per group). Recordings were performed 15 min after normal saline or dexmedetomidine administration. RESULTS: Compared with normal saline, dexmedetomidine (5 and 50 µg·kg-1) decreased respiratory frequency (fR, p = 0.04 and < 0.01, respectively), PR (both p < 0.01), and PaO2 (p = 0.04 and < 0.01), and increased tidal volume (both p = 0.049). Dexmedetomidine at 5 µg·kg-1 did not significantly change minute ventilation (V'E) (p = 0.87) or MAP (p = 0.24), whereas dexmedetomidine at 50 µg·kg-1 significantly decreased V'E (p = 0.03) and increased MAP (p < 0.01). Only dexmedetomidine at 50 µg·kg-1 increased PaCO2 (p < 0.01). Dexmedetomidine (5 and 50 µg·kg-1) significantly increased blood glucose (p < 0.01), and dexmedetomidine at 50 µg·kg-1 increased hemoglobin (p = 0.04). Supplemental atipamezole or efaroxan administration similarly prevented the 50 µg·kg-1 dexmedetomidine-related cardiorespiratory changes. PRINCIPAL CONCLUSION: These results suggest that dexmedetomidine-related hypoventilation and hypertension are observed simultaneously and occur predominantly through activation of α2-adrenoceptors, but not I1 receptors, in spontaneously breathing adult rats.


Subject(s)
Cardiorespiratory Fitness/physiology , Dexmedetomidine/pharmacology , Respiration/drug effects , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Arterial Pressure/drug effects , Benzofurans/pharmacology , Blood Gas Analysis/methods , Blood Pressure/drug effects , Dexmedetomidine/metabolism , Heart Rate/drug effects , Hypertension , Imidazoles/pharmacology , Isoflurane/pharmacology , Male , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/metabolism
19.
Cancer Lett ; 526: 335-345, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34775002

ABSTRACT

Diffuse-type gastric carcinoma (DGC) has a poor prognosis due to its rapid diffusive infiltration and frequent peritoneal dissemination. DGC is associated with massive fibrosis caused by aberrant proliferation of cancer-associated fibroblasts (CAFs). Previously, we reported that direct heterocellular interaction between cancer cells and CAFs is important for the peritoneal dissemination of DGC. In this study, we aimed to identify and target the molecules that mediate such heterocellular interactions. Monoclonal antibodies (mAbs) against intact DGC cells were generated and subjected to high-throughput screening to obtain several mAbs that inhibit the adhesion of DGC cells to CAFs. Immunoprecipitation and mass spectrometry revealed that all mAbs recognized integrin α5 complexed with integrin ß1. Blocking integrin α5 in DGC cells or fibronectin, a ligand of integrin α5ß1, deposited on CAFs abrogated the heterocellular interaction. Administration of mAbs or knockout of integrin α5 in DGC cells suppressed their invasion led by CAFs in vitro and peritoneal dissemination in a mouse xenograft model. Altogether, these findings demonstrate that integrin α5 mediates the heterotypic cancer cell-fibroblast interaction during peritoneal dissemination of DGC and may thus be a therapeutic target.


Subject(s)
Fibroblasts/metabolism , Integrin alpha5/metabolism , Stomach Neoplasms/genetics , Animals , Female , Humans , Mice , Mice, Nude , Rats , Transfection
20.
Front Genet ; 12: 768781, 2021.
Article in English | MEDLINE | ID: mdl-34868254

ABSTRACT

Short-/middle-term and simple prediction studies for carcinogenesis are needed for the safety assessment of chemical substances. To establish a novel genotoxicity assay with an in vivo mimicking system, we prepared murine colonic/pulmonary organoids from gpt delta mice according to the general procedure using collagenase/dispase and cultured them in a 3D environment. When the organoids were exposed to foodborne carcinogens-2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) and acrylamide (AA)-in the presence of metabolic activation systems, mutation frequencies (MFs) occurring in the gpt gene dose-dependently increased. Moreover, the mutation spectrum analysis indicated predominant G:C to T:A transversion with PhIP, and A:T to C:G and A:T to T:A transversion with AA. These data correspond to those of a previous study describing in vivo mutagenicity in gpt delta mice. However, organoids derived from the liver, a non-target tissue of PhIP-carcinogenesis, also demonstrated genotoxicity with a potency comparable to colonic organoids. Organoids and PhIP were directly incubated in the presence of metabolic activation systems; therefore, there was a lack of organ specificity, as observed in vivo. Additionally, PhIP-DNA adduct levels were comparable in hepatic and colonic organoids after PhIP exposure. Taken together, the organoids prepared in the present study may be helpful to predict chemical carcinogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...