Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 14(22): 1917-1932, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31659845

ABSTRACT

Retinoic-acid-related orphan receptor γt (RORγt) inverse agonists could be used for the treatment of autoimmune diseases. Previously, we reported a novel quinazolinedione 1 a with a flexible linear linker as a novel RORγt inverse agonist. A U-shaped conformation in the complex structure of 1 a with RORγt protein was confirmed. Further improvement of the pharmacokinetic (PK) profiles was required because of the low drug exposure in mice upon oral administration (mouse AUC of 1 a: 27 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). To improve the PK profiles, conformationally constrained U-shaped scaffolds were investigated. As a result, morpholine analogues with improved PK profiles and high potency were successfully identified. The substituent at the N1 position of the quinazoline moiety was also modified, leading to an enhancement of reporter activity. Consequently, compound 43 (N2 -(3-chloro-4-cyanophenyl)-N4 -(3-(cyclopropylmethyl)-1-isopropyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-6-yl)morpholine-2,4-dicarboxamide) exhibited improved drug exposure (mouse AUC: 1289 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). In addition, suppression of IL-17A gene expression by IL-23 stimulation in a mouse pharmacodynamics model was observed for 43. The conformation of 43 with RORγt protein was also confirmed as U-shape by X-ray co-crystal structure analysis. The key interaction that boosts potency is also discussed.


Subject(s)
Cyclopentanes/pharmacology , Drug Design , Furans/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Administration, Oral , Animals , Crystallography, X-Ray , Cyclopentanes/administration & dosage , Cyclopentanes/chemical synthesis , Fluorescence Resonance Energy Transfer , Furans/administration & dosage , Furans/chemical synthesis , Mice , Models, Molecular , Molecular Conformation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
2.
Bioorg Med Chem ; 23(10): 2568-78, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25862209

ABSTRACT

To develop effective drugs for hypogonadism, sarcopenia, and cachexia, we designed, synthesized, and evaluated selective androgen receptor modulators (SARMs) that exhibit not only anabolic effects on organs such as muscles and the central nervous system (CNS) but also neutral or antagonistic effects on the prostate. Based on the information obtained from a docking model with androgen receptor (AR), we modified a hit compound A identified through high-throughput screening. Among the prepared compounds, 1-(4-cyano-1-naphthyl)-2,3-disubstituted pyrrolidine derivatives 17h, 17m, and 17j had highly potent AR agonistic activities in vitro and good tissue selectivity in vivo. These derivatives increased the weight of the levator ani muscle without influencing the prostate and seminal vesicle. In addition, these compounds induced sexual behavior in castrated rats, indicating that the compounds could also act as agonists on the CNS.


Subject(s)
Anabolic Agents/chemical synthesis , Androgens/chemical synthesis , Naphthols/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Androgen/metabolism , Anabolic Agents/pharmacology , Androgens/pharmacology , Animals , Castration , Central Nervous System/drug effects , Central Nervous System/metabolism , Gene Expression , Humans , Male , Molecular Docking Simulation , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Naphthols/pharmacology , Prostate/drug effects , Prostate/metabolism , Protein Binding , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Androgen/genetics , Sexual Behavior, Animal/drug effects , Structure-Activity Relationship , Testosterone/pharmacology
3.
Bioorg Med Chem Lett ; 23(13): 3848-51, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23711922

ABSTRACT

The fluoroquinolone antibiotic binding site in the hERG potassium channel was examined for the residues involved and their position in the tetrameric channel. The blocking effect of the two fluoroquinolones levofloxacin and sparfloxacin to tandem dimers of the hERG mutants were evaluated electrophysiologically. The results indicated that two Tyr652s in the neighboring subunits and one or two Phe656s in the diagonal subunits contributed to the blockade in the case of both compounds, and Ser624 was also involved. The docking studies suggested that the protonated carboxyl group in the compounds strongly interacts with Phe656 as a π acceptor.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Fluoroquinolones/pharmacology , Potassium Channel Blockers/pharmacology , Anti-Bacterial Agents/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , ERG1 Potassium Channel , Fluoroquinolones/chemistry , Humans , Models, Molecular , Potassium Channel Blockers/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 55(9): 4336-51, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22490048

ABSTRACT

Recently, we discovered 3-aminomethylquinoline derivative 1, a selective, highly potent, centrally acting, and orally bioavailable human MCH receptor 1 (hMCHR1) antagonist, that inhibited food intake in F344 rats with diet-induced obesity (DIO). Subsequent investigation of 1 was discontinued because 1 showed potent hERG K(+) channel inhibition in a patch-clamp study. To decrease hERG K(+) channel inhibition, experiments with ligand-based drug designs based on 1 and a docking study were conducted. Replacement of the terminal p-fluorophenyl group with a cyclopropylmethoxy group, methyl group introduction on the benzylic carbon at the 3-position of the quinoline core, and employment of a [2-(acetylamino)ethyl]amino group as the amine portion eliminated hERG K(+) channel inhibitory activity in a patch-clamp study, leading to the discovery of N-{3-[(1R)-1-{[2-(acetylamino)ethyl]amino}ethyl]-8-methylquinolin-7-yl}-4-(cyclopropylmethoxy)benzamide (R)-10h. The compound (R)-10h showed potent inhibitory activity against hMCHR1 and dose-dependently suppressed food intake in a 2-day study on DIO-F344 rats. Furthermore, practical chiral synthesis of (R)-10h was performed to determine the molecule's absolute configuration.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Benzamides/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Obesity/drug therapy , Quinolines/pharmacology , Receptors, Pituitary Hormone/antagonists & inhibitors , Animals , Anti-Obesity Agents/chemical synthesis , Benzamides/chemical synthesis , Benzamides/chemistry , CHO Cells , Cricetinae , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Ligands , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Obesity/genetics , Obesity/metabolism , Quinolines/chemical synthesis , Quinolines/chemistry , Rats , Rats, Inbred F344 , Receptors, Pituitary Hormone/metabolism , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Structure-Activity Relationship
5.
J Comput Chem ; 30(14): 2267-76, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19263433

ABSTRACT

High-level ab initio calculations have been carried out using a formamide-benzene model system to evaluate amide-pi interactions. The interaction energies were estimated as a sum of the CCSD(T) correlation contribution and the HF energy at the complete basis set limit, for the geometries of the model structures at the energy minimum obtained by potential energy surface (PES) scans. NH/pi geometry in a face-on configuration was found to be the most attractive among the various geometries considered, with interaction energy of -3.75 kcal/mol. An interaction energy of -2.08 kcal/mol was calculated for the stacked N/Center type geometry, where the nitrogen atom of formamide points directly toward the center of the aromatic ring. The weakest C=O/pi geometry, where a carbonyl oxygen atom points toward the plane of the aromatic ring, was found to have energy minimum at an intermolecular distance of 3.67 A from the PES, with a repulsive interaction energy less than 1 kcal/mol. However, if there are simultaneous attractive interactions with other parts of the molecule besides the amide group, the weak repulsion could be easily overcome, to give a C=O/pi geometry interaction.


Subject(s)
Amides/chemistry , Benzene/chemistry , Formamides/chemistry , Computer Simulation , Models, Chemical , Models, Molecular , Quantum Theory , Thermodynamics
6.
J Med Chem ; 52(6): 1630-8, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19260734

ABSTRACT

To characterize drug binding to the human ether-a-go-go related gene (hERG) channel, a synergic approach interplaying patch-clamp experiments and a docking study was developed. Mutations were introduced into concatenated dimers of the hERG channel that were assembled into a heterotetramer with mutated diagonal subunits. The binding affinities of three drugs (cisapride, terfenadine, and N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide dihydrochloride (E-4031, 1)) to a set of mutant channels were examined electrophysiologically to assess the involved residues, their number, and relative positions. Cisapride and 1 interacted with Tyr652 residues on adjacent subunits, while terfenadine interacted with Tyr652 residues on diagonal, but not on adjacent, subunits. Phe656 was involved in the binding of all three drugs, and Ser624 was found to be only involved in cisapride and 1. The docking models demonstrated that pi-pi and CH-pi interactions rather than cation-pi interaction play a key role in drug binding to the hERG channel.


Subject(s)
Cisapride/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Piperidines/metabolism , Pyridines/metabolism , Terfenadine/metabolism , Amino Acid Sequence , Binding Sites , Cell Line , Dimerization , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Patch-Clamp Techniques , Sequence Homology, Amino Acid
7.
Chem Pharm Bull (Tokyo) ; 56(8): 1126-37, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18670113

ABSTRACT

To investigate the potency of an adenosine A3 receptor (A3AR) antagonist as an anti-asthmatic drug, a novel series of 4-phenyl-5-pyridyl-1,3-thiazole derivatives was synthesized and evaluated in human adenosine A1, A2A and A3 receptor and rat adenosine A3 receptor binding assays. From investigation of the SAR study, compound 7af was identified as a highly potent human and rat A3AR antagonist. This compound inhibited IB-MECA-induced plasma protein extravasation in the skin of rats and showed good oral absorption. Also, compound 7af significantly inhibited antigen-induced hyper-responsiveness to acetylcholine in actively sensitized Brown Norway rats. These results show that 4-phenyl-5-pyridyl-1,3-thiazole derivatives are potential candidates to enable the evaluation of A3AR antagonists. Further evaluation of this class of compounds may afford a novel anti-inflammatory agent such as an anti-asthmatic drug.


Subject(s)
Adenosine A3 Receptor Antagonists , Thiazoles/pharmacology , Animals , Humans , Rats , Structure-Activity Relationship , Thiazoles/chemistry
8.
Protein Sci ; 17(7): 1129-37, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18434503

ABSTRACT

During systematic analysis of nonbonded contacts in protein-ligand complexes derived from crystal structures in the Protein Data Bank, Cl-pi interactions have been found, not only in the well-documented serine proteases but also, to a lesser extent, in other proteins. From geometric analysis of such Cl-pi interactions in the crystal structures, two distinct geometries were found: the "edge-on" approach of a Cl atom to a ring atom or C-C bond and the "face-on" approach toward the ring centroid with an average interatomic distance of 3.6 A. High-level ab initio calculations using benzene-chlorohydrocarbon model systems elucidated that the calculated Cl-pi interaction energy is -2.01 kcal/mol, and the dispersion force is the major source of attraction. We also discussed the geometric flexibility in Cl-pi interactions and a relationship between the intensity of the pi density in an aromatic ring and the interaction position of the Cl atom.


Subject(s)
Proteins/chemistry , Electrons , Ligands
9.
J Med Chem ; 50(6): 1189-96, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17315854

ABSTRACT

The nonbonded contacts analysis of 14 polar and aromatic amino acid side chains was carried out for protein-ligand complexes derived from the crystal structures in the Protein Data Bank. Through the exhaustive analysis, several unusual contacts were observed as well as the well-known interactions. CH-S interactions were frequently found in Met-related contacts, which have not yet been the subject of systematic investigations. We have also described the propensity of each amino acid for nonbonded interactions. All amino acids studied in this work showed high frequencies for the canonical hydrogen-bonding NH-O, OH-N, and OH-O interactions, while the preferences in noncanonical interactions such as CH- pi interactions were not always consistent among the side chains with similar characteristics. Understanding such amino acid side chain propensities is important for improving the accuracy of structure-based drug design, and this study will open new possibilities for developing unique compounds with high binding affinity.


Subject(s)
Amino Acids/chemistry , Ligands , Proteins/chemistry , Crystallography, X-Ray , Databases, Protein , Hydrogen Bonding , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...