Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1834(2): 601-10, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23232153

ABSTRACT

Understanding astrocytogenesis is valuable for the treatment of nervous system disorders, as astrocytes provide structural, metabolic and defense support to neurons, and regulate neurons actively. However, there is limited information about the molecular events associated with the differentiation from primate ES cells to astrocytes. We therefore investigated the differentially expressed proteins in early astrocytogenesis, from cynomolgus monkey ES cells (CMK6 cell line) into astrocyte progenitor (AstP) cells via the formation of primitive neural stem spheres (Day 4), mature neural stem spheres (NSS), and neural stem (NS) cells in vitro, using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS-MS). We identified 66 differentially expressed proteins involved in these five differentiation stages. Together with the results of Western blotting, RT-PCR, and a search of metabolic pathways related to the identified proteins, these results indicated that collapsin response mediator protein 2 (CRMP2), its phosphorylated forms, and cellular retinoic acid binding protein 1 (CRABP1) were upregulated from ES cells to Day 4 and NSS cells, to which differentiation stages apoptosis-associated proteins such as caspases were possibly related; Phosphorylated CRMP2s were further upregulated but CRABP1 was downregulated from NSS cells to NS cells, during which differentiation stage considerable axon guidance proteins for development of growth cones, axon attraction, and repulsion were possibly readied; Nonphosphorylated CRMP2 was downregulated but CRABP1 was re-upregulated from NS cells to AstP cells, in which differentiation stage reorganization of actin cytoskeleton linked to focal adhesion was possibly accompanied. These results provide insight into the molecular basis of early astrocytogenesis in monkey.


Subject(s)
Astrocytes/metabolism , Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Gene Expression Regulation/physiology , Proteomics , Animals , Astrocytes/cytology , Cell Line , Embryonic Stem Cells/cytology , Macaca fascicularis , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism
2.
Biochim Biophys Acta ; 1814(2): 265-76, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21047566

ABSTRACT

Understanding neurogenesis is valuable for the treatment of nervous system disorders. However, there is currently limited information about the molecular events associated with the transition from primate ES cells to neural cells. We therefore sought to identify the proteins involved in neurogenesis, from Macaca fascicularis ES cells (CMK6 cell line) to neural stem (NS) cells to neurons using two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), and liquid chromatography-tandem mass spectrometry (LC-MS-MS). During the differentiation of highly homogeneous ES cells to NS cells, we identified 17 proteins with increased expression, including fatty acid binding protein 7 (FABP7), collapsin response mediator protein 2 (CRMP2), and cellular retinoic acid binding protein 1 (CRABP1), and seven proteins with decreased expression. In the differentiation of NS cells to neurons, we identified three proteins with increased expression, including CRMP2, and 10 proteins with decreased expression. Of these proteins, FABP7 is a marker of NS cells, CRMP2 is involved in axon guidance, and CRABP1 is thought to regulate retinoic acid access to its nuclear receptors. Western blot analysis confirmed the upregulation of FABP7 and CRABP1 in NS cells, and the upregulation of CRMP2 in NS cells and neurons. RT-PCR results showed that CRMP2 and FABP7 mRNAs were also upregulated in NS cells, while CRABP1 mRNA was unchanged. These results provide insight into the molecular basis of monkey neural differentiation.


Subject(s)
Embryonic Stem Cells/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Proteomics/methods , Animals , Blotting, Western , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Differentiation/genetics , Cell Line , Electrophoresis, Gel, Two-Dimensional , Embryonic Stem Cells/cytology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , In Vitro Techniques , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Macaca fascicularis , Neural Stem Cells/cytology , Neurons/cytology , Protein Interaction Mapping , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tandem Mass Spectrometry
3.
Biochim Biophys Acta ; 1804(6): 1272-84, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20152940

ABSTRACT

In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization.


Subject(s)
Disulfides , Down-Regulation/physiology , Enzyme Precursors , Muramidase/chemistry , Protein Disulfide-Isomerases , Protein Folding , Spermatogenesis/physiology , Spermatozoa/enzymology , Animals , Base Sequence , Cloning, Molecular , Disulfides/chemistry , Disulfides/metabolism , Enzyme Precursors/biosynthesis , Enzyme Precursors/chemistry , Enzyme Precursors/genetics , Epididymis/enzymology , Fertilization/physiology , Gene Expression Regulation, Enzymologic/physiology , Humans , Male , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Muramidase/metabolism , Oxidation-Reduction , Protein Denaturation , Protein Disulfide-Isomerases/biosynthesis , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...