Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Acta Neuropathol Commun ; 3: 63, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26463344

ABSTRACT

INTRODUCTION: Autism is diagnosed in numerous genetic and genomic developmental disorders associated with an overlap in high-risk genes and loci that underlie intellectual disability (ID) and epilepsy. The aim of this stereological study of neuronal soma volume in 25 brain structures and their subdivisions in eight individuals 9 to 26 years of age who were diagnosed with chromosome 15q11.2-13.1 duplication syndrome [dup(15)], autism, ID and epilepsy; eight age-matched subjects diagnosed with autism of unknown etiology (idiopathic autism) and seven control individuals was to establish whether defects of neuronal soma growth are a common denominator of developmental pathology in idiopathic and syndromic autism and how genetic modifications alter the trajectory of neuronal soma growth in dup(15) autism. RESULTS: Application of the Nucleator software to estimate neuronal size revealed significant neuronal soma volume deficits in 11 of 25 structures and their subregions (44 %) in subjects diagnosed with dup(15) autism, including consistent neuronal soma volume deficits in the limbic system (sectors CA2, 3 and 4 in Ammon's horn, the second and third layers of the entorhinal cortex and in the amygdala), as well as in the thalamus, nucleus accumbens, external globus pallidus, and Ch3 nucleus in the magnocellular basal complex, and in the inferior olive in the brainstem. The second feature distinguishing dup(15) autism was persistent neuronal soma deficits in adolescents and young adults, whereas in idiopathic autism, neuronal volume deficit is most prominent in 4- to 8-year-old children but affects only a few brain regions in older subjects. CONCLUSIONS: This study demonstrates that alterations in the trajectory of neuronal growth throughout the lifespan are a core pathological features of idiopathic and syndromic autism. However, dup(15) causes persistent neuronal volume deficits in adolescence and adulthood, with prominent neuronal growth deficits in all major compartments of the limbic system. The more severe neuronal nuclear and cytoplasic volume deficits in syndromic autism found in this study and the more severe focal developmental defects in the limbic system in dup(15) previously reported in this cohort may contribute to the high prevalence of early onset intractable epilepsy and sudden unexpected death in epilepsy.


Subject(s)
Intellectual Disability/pathology , Limbic System/pathology , Neurons/pathology , Adolescent , Adult , Autistic Disorder/pathology , Child , Chromosome Aberrations , Chromosomes, Human, Pair 15 , Female , Humans , Severity of Illness Index , Young Adult
2.
Acta Neuropathol Commun ; 3: 2, 2015 Jan 17.
Article in English | MEDLINE | ID: mdl-25595448

ABSTRACT

INTRODUCTION: Characterization of the type and topography of structural changes and their alterations throughout the lifespan of individuals with autism is essential for understanding the mechanisms contributing to the autistic phenotype. The aim of this stereological study of neurons in 16 brain structures of 14 autistic and 14 control subjects from 4 to 64 years of age was to establish the course of neuronal nuclear and cytoplasmic volume changes throughout the lifespan of individuals with autism. RESULTS: Our data indicate that a deficit of neuronal soma volume in children with autism is associated with deficits in the volume of the neuronal nucleus and cytoplasm. The significant deficits of neuronal nuclear and cytoplasmic volumes in 13 of 16 examined subcortical structures, archicortex, cerebellum, and brainstem in 4- to 8-year-old autistic children suggest a global nature of brain developmental abnormalities, but with region-specific differences in the severity of neuronal pathology. The observed increase in nuclear volumes in 8 of 16 structures in the autistic teenagers/young adults and decrease in nuclear volumes in 14 of 16 regions in the age-matched control subjects reveal opposite trajectories throughout the lifespan. The deficit in neuronal nuclear volumes, ranging from 7% to 42% in the 16 examined regions in children with autism, and in neuronal cytoplasmic volumes from 1% to 31%, as well as the broader range of interindividual differences for the nuclear than the cytoplasmic volume deficits, suggest a partial distinction between nuclear and cytoplasmic pathology. CONCLUSIONS: The most severe deficit of both neuronal nucleus and cytoplasm volume in 4-to 8-year-old autistic children appears to be a reflection of early developmental alterations that may have a major contribution to the autistic phenotype. The broad range of functions of the affected structures implies that their developmental and age-associated abnormalities contribute not only to the diagnostic features of autism but also to the broad spectrum of clinical alterations associated with autism. Lack of clinical improvement in autistic teenagers and adults indicates that the observed increase in neuron nucleus and cytoplasm volume close to control level does not normalize brain function.


Subject(s)
Autistic Disorder/pathology , Brain/growth & development , Brain/pathology , Cell Nucleus/pathology , Cytoplasm/pathology , Neurons/pathology , Adolescent , Adult , Age Factors , Autistic Disorder/physiopathology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
3.
Acta Neuropathol Commun ; 2: 141, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25231243

ABSTRACT

INTRODUCTION: A total of 38 brain cytoarchitectonic subdivisions, representing subcortical and cortical structures, cerebellum, and brainstem, were examined in 4- to 60-year-old subjects diagnosed with autism and control subjects (a) to detect a global pattern of developmental abnormalities and (b) to establish whether the function of developmentally modified structures matches the behavioral alterations that are diagnostic for autism. The volume of cytoarchitectonic subdivisions, neuronal numerical density, and total number of neurons per region of interest were determined in 14 subjects with autism and 14 age-matched controls by using unbiased stereological methods. RESULTS: The study revealed that significant differences between the group of subjects with autism and control groups are limited to a few brain regions, including the cerebellum and some striatum and amygdala subdivisions. In the group of individuals with autism, the total number and numerical density of Purkinje cells in the cerebellum were reduced by 25% and 24%, respectively. In the amygdala, significant reduction of neuronal density was limited to the lateral nucleus (by 12%). Another sign of the topographic selectivity of developmental alterations in the brain of individuals with autism was an increase in the volumes of the caudate nucleus and nucleus accumbens by 22% and 34%, respectively, and the reduced numerical density of neurons in the nucleus accumbens and putamen by 15% and 13%, respectively. CONCLUSIONS: The observed pattern of developmental alterations in the cerebellum, amygdala and striatum is consistent with the results of magnetic resonance imaging studies and their clinical correlations, and of some morphometric studies that indicate that detected abnormalities may contribute to the social and communication deficits, and repetitive and stereotypical behaviors observed in individuals with autism.


Subject(s)
Amygdala/pathology , Autistic Disorder/pathology , Cerebellum/pathology , Corpus Striatum/pathology , Neurons/pathology , Adolescent , Adult , Cell Count , Child , Child, Preschool , Diagnosis , Female , Humans , Male , Middle Aged , Stereotaxic Techniques , Young Adult
4.
Acta Neuropathol Commun ; 2: 28, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24612906

ABSTRACT

Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon's horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits.


Subject(s)
Autistic Disorder/pathology , Brain/growth & development , Brain/pathology , Neurons/pathology , Adolescent , Adult , Age Factors , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Postmortem Changes , Young Adult
5.
Brain Res ; 1512: 106-22, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23558308

ABSTRACT

Individuals with autism demonstrate atypical gaze, impairments in smooth pursuit, altered movement perception and deficits in facial perception. The olivofloccular neuronal circuit is a major contributor to eye movement control. This study of the cerebellum in 12 autistic and 10 control subjects revealed dysplastic changes in the flocculus of eight autistic (67%) and two control (20%) subjects. Defects of the oculomotor system, including avoidance of eye contact and poor or no eye contact, were reported in 88% of autistic subjects with postmortem-detected floccular dysplasia. Focal disorganization of the flocculus cytoarchitecture with deficit, altered morphology, and spatial disorientation of Purkinje cells (PCs); deficit and abnormalities of granule, basket, stellate and unipolar brush cells; and structural defects and abnormal orientation of Bergmann glia are indicators of profound disruption of flocculus circuitry in a dysplastic area. The average volume of PCs was 26% less in the dysplastic region than in the unaffected region of the flocculus (p<0.01) in autistic subjects. Moreover, the average volume of PCs in the entire cerebellum was 25% less in the autistic subjects than in the control subjects (p<0.001). Findings from this study and a parallel study of the inferior olive (IO) suggest that focal floccular dysplasia combined with IO neurons and PC developmental defects may contribute to oculomotor system dysfunction and atypical gaze in autistic subjects.


Subject(s)
Autistic Disorder/complications , Cerebellum/pathology , Developmental Disabilities/complications , Ocular Motility Disorders/etiology , Olivary Nucleus/pathology , Pursuit, Smooth/physiology , Adolescent , Adult , Aged , Child , Child, Preschool , Developmental Disabilities/pathology , Diagnosis, Computer-Assisted , Female , Humans , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Neural Pathways/metabolism , Neural Pathways/pathology , Olivary Nucleus/metabolism , Postmortem Changes , Purkinje Cells/pathology , Young Adult
6.
PLoS One ; 7(5): e35414, 2012.
Article in English | MEDLINE | ID: mdl-22567102

ABSTRACT

BACKGROUND: It has been shown that amyloid ß (Aß), a product of proteolytic cleavage of the amyloid ß precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type-specific amount. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aß load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aß load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aß was mainly N-terminally truncated. Increased intraneuronal accumulation of Aß(17-40/42) in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aß accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aß(1-40/42) detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aß and an extracellular deposition of full-length Aß in nonfibrillar plaques. CONCLUSIONS/SIGNIFICANCE: The higher prevalence of excessive Aß accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aß accumulation and diffuse plaque formation.


Subject(s)
Amyloid beta-Peptides/metabolism , Autistic Disorder/metabolism , Child Development Disorders, Pervasive/metabolism , Neurons/metabolism , Adolescent , Adult , Astrocytes/metabolism , Blotting, Western , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Male , Microscopy, Confocal , Middle Aged , Young Adult
7.
J Neuropathol Exp Neurol ; 71(5): 382-97, 2012 May.
Article in English | MEDLINE | ID: mdl-22487857

ABSTRACT

The purposes of this study were to identify differences in patterns of developmental abnormalities between the brains of individuals with autism of unknown etiology and those of individuals with duplications of chromosome 15q11.2-q13 (dup[15]) and autism and to identify alterations that may contribute to seizures and sudden death in the latter. Brains of 9 subjects with dup(15), 10 with idiopathic autism, and 7 controls were examined. In the dup(15) cohort, 7 subjects (78%) had autism, 7 (78%) had seizures, and 6 (67%) had experienced sudden unexplained death. Subjects with dup(15) autism were microcephalic, with mean brain weights 300 g less (1,177 g) than those of subjects with idiopathic autism (1,477 g; p<0.001). Heterotopias in the alveus, CA4, and dentate gyrus and dysplasia in the dentate gyrus were detected in 89% of dup(15) autism cases but in only 10% of idiopathic autism cases (p < 0.001). By contrast, cerebral cortex dysplasia was detected in 50% of subjects with idiopathic autism and in no dup(15) autism cases (p<0.04). The different spectrum and higher prevalence of developmental neuropathologic findings in the dup(15) cohort than in cases with idiopathic autism may contribute to the high risk of early onset of seizures and sudden death.


Subject(s)
Autistic Disorder/diagnosis , Autistic Disorder/genetics , Chromosome Duplication/genetics , Chromosomes, Human, Pair 15 , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Adolescent , Adult , Brain/abnormalities , Brain/pathology , Child , Child, Preschool , Choristoma/pathology , Chromosome Mapping , Cohort Studies , Female , Humans , Karyotyping , Male , Organ Size/genetics , Statistics, Nonparametric , Young Adult
8.
Acta Neuropathol ; 119(6): 755-70, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20198484

ABSTRACT

Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4-60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-mum-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype.


Subject(s)
Autistic Disorder/pathology , Brain/pathology , Adolescent , Adult , Autistic Disorder/complications , Autistic Disorder/genetics , Brain/growth & development , Case-Control Studies , Cell Movement , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Neurogenesis , Neurons/pathology , Young Adult
9.
Acta Neuropathol ; 113(4): 389-402, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17237937

ABSTRACT

Amyloid beta (Abeta) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer's disease to determine if intraneuronal Abeta immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Abeta immunoreactivity in neurons in infants and stable neuron-type specific Abeta immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4-13 aa and 8-17 aa of Abeta in neurons indicated that intraneuronal Abeta was mainly a product of alpha- and gamma-secretases (Abeta(17-40/42)). The presence of N-terminally truncated Abeta(17-40) and Abeta(17-42) in the control brains was confirmed by Western blotting and the identity of Abeta(17-40) was confirmed by mass spectrometry. The prevalence of products of alpha- and gamma -secretases in neurons and beta- and gamma-secretases in plaques argues against major contribution of Abeta-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Abeta(17-42) immunoreactivity was observed in structures with low susceptibility to fibrillar Abeta deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Abeta immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Abeta immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Abeta represents a product of normal neuronal metabolism.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology , Down Syndrome/metabolism , Intracellular Fluid/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Case-Control Studies , Child, Preschool , Down Syndrome/pathology , Female , Humans , Infant , Male , Middle Aged , Predictive Value of Tests
10.
Brain Res ; 1022(1-2): 19-29, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15353209

ABSTRACT

Ultrastructural three-dimensional reconstruction indicates that deposition of amyloid in the wall of capillaries and in perivascular plaques in APP(SW) transgenic mice (Tg2576) represents two steps of one pathological process associated with inflammation of the vascular wall and perivascular space with cells of monocyte/microglia lineage and fibrillar amyloid-beta deposition. Plaque growth is associated with an increase in the number of microglial cells from two in the smallest plaque to 113 in the largest plaque; however, the growth in the number of microglial cells does not result in amyloid deposit degradation. On the contrary, an increase in the number and volume of microglial cells correlates with the growth of amyloid star from 62 to 34,460 microm(3), and an increase of the plaque volume from 1555 to 284,497 microm(3) (r=0.9). Growth in the number of microglial cells in the absence of morphological evidence of fibrillar amyloid internalization and phagocytosis indicates that microglial cells do not remove amyloid in Tg2576 mice. The study suggests that (a) the mechanism of capillary amyloidosis and plaque formation is similar, (b) the cells of monocyte/macrophage lineage play a critical role in fibrillar amyloid deposition in both types of lesions, and (c) treatment of one of these two forms of brain amyloidosis may affect both types of pathological changes.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Amyloidosis/pathology , Blood Vessels/pathology , Cerebral Amyloid Angiopathy/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Amyloidosis/genetics , Animals , Blood Vessels/ultrastructure , Imaging, Three-Dimensional/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic/metabolism , Microglia/metabolism , Microglia/ultrastructure , Plaque, Amyloid/genetics , Plaque, Amyloid/ultrastructure
11.
Neurobiol Aging ; 25(5): 663-74, 2004.
Article in English | MEDLINE | ID: mdl-15172746

ABSTRACT

Amyloid plaques appear early during Alzheimer's disease (AD), and their development is intimately linked to activated astrocytes and microglia. Astrocytes are capable of accumulating substantial amounts of neuron-derived, amyloid beta(1-42) (Abeta42)-positive material and other neuron-specific proteins as a consequence of their debris-clearing role in response to local neurodegeneration. Immunohistochemical analyses have suggested that astrocytes overburdened with these internalized materials can eventually undergo lysis, and radial dispersal of their cytoplasmic contents, including Abeta42, can lead to the deposition of a persistent residue in the form of small, GFAP-rich, astrocytic amyloid plaques, first appearing in the molecular layer of the cerebral cortex. Microglia, most of which appear to be derived from blood monocytes and recruited from local blood vessels, rapidly migrate into and congregate within neuritic and dense-core plaques, but not diffuse plaques. Instead of internalizing and removing Abeta from plaques, microglia appear to contribute to their morphological and chemical evolution by facilitating the conversion of existing soluble and oligomeric Abeta within plaques to the fibrillar form. Abeta fibrillogenesis may occur largely within tiny, tube-like invaginations in the surface plasma membrane of microglia. These results highlight the therapeutic potential of blocking the initial intracellular accumulation of Abeta42 in neurons and astrocytes and inhibiting microglia-mediated assembly of fibrillar Abeta, which is particularly resistant to degradation in Alzheimer brain.


Subject(s)
Alzheimer Disease/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/pathology , Humans , Models, Biological , Neurons/metabolism , Peptide Fragments/metabolism
12.
Acta Neuropathol ; 105(4): 393-402, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12624793

ABSTRACT

Activated microglial cells are an integral component of fibrillar plaques in brains of subjects with Alzheimer's disease (AD) and in brains of transgenic mice overexpressing amyloidogenic fragments of human amyloid precursor protein (APP). The aim of this ultrastructural study of fibrillar plaques was to characterize the origin of microglial cells involved in cored plaque formation. Computer-aided three-dimensional reconstruction of plaques and microvessels in APPsw transgenic mice shows perivascular development of cored plaques. Perivascular location of almost all examined plaques and the infiltration at the interface between vessels and plaques with cells of monocyte/microglia lineage indicates that plaques are formed by inflammatory cells of blood origin. The increase in the number of microglial cells from 1 or 2 in an early plaque to more than 100 in a several-month-old plaque does not result in plaque degradation, but is associated with amyloid core growth and progression of neuronal degeneration, and suggests that recruitment of inflammatory cells of blood origin sustains plaque growth. Infiltration of the plaque with cells of blood origin and degeneration of 10-46% of inflammatory cells in large plaques, which is especially frequent at the interface between capillary wall and plaque, suggest their accelerated turnover.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Capillaries/pathology , Microglia/pathology , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/ultrastructure , Animals , Brain/blood supply , Brain/metabolism , Brain/ultrastructure , Capillaries/metabolism , Cell Lineage , Cricetinae , Humans , Image Processing, Computer-Assisted , Mice , Mice, Transgenic , Microglia/metabolism , Microglia/ultrastructure , Plaque, Amyloid/metabolism , Plaque, Amyloid/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...