Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Evid Based Integr Med ; 29: 2515690X241251558, 2024.
Article in English | MEDLINE | ID: mdl-38689490

ABSTRACT

Liver cancer is the most common cancer among males in Africa. The disease has a poor prognosis and its treatment is associated with toxicity and resistance. For this reason, numerous herbal combinations are being subjected to anticancer screening to circumvent the shortcomings of the conventional anticancer drugs. In the current study, the in vivo anti-cancer effects of the chloroform root extract of the herb, Clausena excavata Burm were investigated. Liver cancer was induced in mice by a single intraperitoneal injection of diethylnitrosamine (DEN) followed by oral administration of the promoter of carcinogenesis, 2-aminoacetyl fluorine that was mixed with the mice feed. The cytotoxicity of the root extract of C. excavata on liver cancer cells was investigated using liver enzyme, histology, DNA fragmentation and caspases assays. Real time qPCR was conducted to evaluate the effect of the extract on apoptotic genes. The findings revealed that the extract of C. excavata significantly decreased the progression of hepatocarcinogenesis and the toxicity-induced production of the liver enzymes, alanine and aspartate aminotransferases. The histological analyses of the liver tissues revealed evidence of apoptotic cell death. The extract also provoked significant (p < .05) expressions of caspase 9 protein and gene as well as other apoptotic genes (P53, P27, Apaf-1, cytochrome C, bax and bid). Therefore, we postulate that the chloroform root extract of C. excavata induces apoptosis of liver cancer in mice.


Subject(s)
Chloroform , Liver , Carcinoma, Hepatocellular/chemically induced , Plant Roots/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Clausena , Diethylamines/toxicity , Antineoplastic Agents, Phytogenic/pharmacology
2.
J Trace Elem Med Biol ; 78: 127203, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201368

ABSTRACT

Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1-3 (TET 1-3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1-3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.


Subject(s)
Hepcidins , Iron Deficiencies , Humans , Hepcidins/genetics , Hepcidins/metabolism , Epigenesis, Genetic/genetics , Histone Demethylases/metabolism , Iron/metabolism , Homeostasis/genetics
3.
Glob Chall ; 1(8): 1700043, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-31565292

ABSTRACT

Noncommunicable chronic diseases (NCCDs) are the leading causes of morbidity and mortality globally. The mismatch between present day diets and ancestral genome is suggested to contribute to the NCCDs burden, which is promoted by traditional risk factors like unhealthy diets, physical inactivity, alcohol and tobacco. However, epigenetic evidence now suggests that cumulatively inherited epigenetic modifications may have made humans more prone to the effects of present day lifestyle factors. Perinatal starvation was widespread in the 19th century. This together with more recent events like increasing consumption of western and low fiber diets, smoking, harmful use of alcohol, physical inactivity, and environmental pollutants may have programed the human epigenome for higher NCCDs risk. In this review, on the basis of available epigenetic data it is hypothesized that transgenerational effects of lifestyle factors may be contributing to the current global burden of NCCDs. Thus, there is a need to reconsider prevention strategies so that the subsequent generations will not have to pay for our sins and those of our ancestors.

4.
Front Physiol ; 7: 527, 2016.
Article in English | MEDLINE | ID: mdl-27877136

ABSTRACT

Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 µM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 µM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process.

SELECTION OF CITATIONS
SEARCH DETAIL
...