Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(10): 4915-4935, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31009559

ABSTRACT

Anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, is predominantly expressed in the brain and implicated in neuronal development and cognition. However, the detailed function of ALK in the central nervous system (CNS) is still unclear. To elucidate the role of ALK in the CNS, it was necessary to discover a potent, selective, and brain-penetrant ALK inhibitor. Scaffold hopping and lead optimization of N-(2,4-difluorobenzyl)-3-(1 H-pyrazol-5-yl)imidazo[1,2- b]pyridazin-6-amine 1 guided by a cocrystal structure of compound 1 bound to ALK resulted in the identification of (6-(1-(5-fluoropyridin-2-yl)ethoxy)-1-(5-methyl-1 H-pyrazol-3-yl)-1 H-pyrrolo[2,3- b]pyridin-3-yl)((2 S)-2-methylmorpholin-4-yl)methanone 13 as a highly potent, selective, and brain-penetrable compound. Intraperitoneal administration of compound 13 significantly decreased the phosphorylated-ALK (p-ALK) levels in the hippocampus and prefrontal cortex in the mouse brain. These results suggest that compound 13 could serve as a useful chemical probe to elucidate the mechanism of ALK-mediated brain functions and the therapeutic potential of ALK inhibition.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Brain/drug effects , Drug Discovery/methods , Protein Kinase Inhibitors/chemical synthesis , Animals , Biological Transport , Brain/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Inhibitory Concentration 50 , LLC-PK1 Cells , Mice , Mice, Inbred ICR , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Swine
2.
PLoS One ; 12(7): e0181243, 2017.
Article in English | MEDLINE | ID: mdl-28704514

ABSTRACT

Elucidating the bioactive compound modes of action is crucial for increasing success rates in drug development. For anticancer drugs, defining effective drug combinations that overcome resistance improves therapeutic efficacy. Herein, by using a biologically annotated compound library, we performed a large-scale combination screening with Stearoyl-CoA desaturase-1 (SCD1) inhibitor, T-3764518, which partially inhibits colorectal cancer cell proliferation. T-3764518 induced phosphorylation and activation of AMPK in HCT-116 cells, which led to blockade of downstream fatty acid synthesis and acceleration of autophagy. Attenuation of fatty acid synthesis by small molecules suppressed the growth inhibitory effect of T-3764518. In contrast, combination of T-3764518 with autophagy flux inhibitors synergistically inhibited cellular proliferation. Experiments using SCD1 knock-out cells validated the results obtained with T-3764518. The results of our study indicated that activation of autophagy serves as a survival signal when SCD1 is inhibited in HCT-116 cells. Furthermore, these findings suggest that combining SCD1 inhibitor with autophagy inhibitors is a promising anticancer therapy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/physiology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Growth Inhibitors/pharmacology , Oxadiazoles/pharmacology , Pyridazines/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , AMP-Activated Protein Kinases/administration & dosage , AMP-Activated Protein Kinases/physiology , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Proliferation/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Feedback, Physiological/physiology , Gene Knockout Techniques , HCT116 Cells , Humans , Phosphorylation/drug effects , Stearoyl-CoA Desaturase/genetics
3.
Bioorg Med Chem ; 25(14): 3768-3779, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28571972

ABSTRACT

A lead compound A was identified previously as an stearoyl coenzyme A desaturase (SCD) inhibitor during research on potential treatments for obesity. This compound showed high SCD1 binding affinity, but a poor pharmacokinetic (PK) profile and limited chemical accessibility, making it suboptimal for use in anticancer research. To identify potent SCD1 inhibitors with more promising PK profiles, we newly designed a series of 'non-spiro' 4, 4-disubstituted piperidine derivatives based on molecular modeling studies. As a result, we discovered compound 1a, which retained moderate SCD1 binding affinity. Optimization around 1a was accelerated by analyzing Hansch-Fujita and Hammett constants to obtain 4-phenyl-4-(trifluoromethyl)piperidine derivative 1n. Fine-tuning of the azole moiety of 1n led to compound 1o (T-3764518), which retained nanomolar affinity and exhibited an excellent PK profile. Reflecting the good potency and PK profile, orally administrated compound 1o showed significant pharmacodynamic (PD) marker reduction (at 0.3mg/kg, bid) in HCT116 mouse xenograft model and tumor growth suppression (at 1mg/kg, bid) in 786-O mouse xenograft model. In conclusion, we identified a new series of SCD1 inhibitors, represented by compound 1o, which represents a promising new chemical tool suitable for the study of SCD1 biology as well as the potential development of novel anticancer therapies.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Oxadiazoles/chemical synthesis , Pyridazines/chemical synthesis , Stearoyl-CoA Desaturase/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , HCT116 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/metabolism , Oxadiazoles/pharmacokinetics , Oxadiazoles/therapeutic use , Oxadiazoles/toxicity , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Protein Binding , Pyridazines/pharmacokinetics , Pyridazines/therapeutic use , Pyridazines/toxicity , Spiro Compounds/chemistry , Stearoyl-CoA Desaturase/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
4.
Eur J Pharmacol ; 807: 21-31, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28442322

ABSTRACT

Most cancer cells are characterized by elevated lipid biosynthesis. The rapid proliferation of cancer cells requires de novo synthesis of fatty acids. Stearoyl-CoA desaturase-1 (SCD1), a key enzyme for lipogenesis, is overexpressed in various types of cancer and plays an important role in cancer cell proliferation. Therefore, it has been studied as a candidate target for cancer therapy. In this study, we demonstrate the pharmacological properties of T-3764518, a novel and orally available small molecule inhibitor of SCD1. T-3764518 inhibited stearoyl-CoA desaturase-catalyzed conversion of stearoyl-CoA to oleoyl-CoA in colorectal cancer HCT-116 cells and their growth. Further, it slowed tumor growth in an HCT-116 and a mesothelioma MSTO-211H mouse xenograft model. Comprehensive lipidomic analyses revealed that T-3764518 increases the membrane ratio of saturated: unsaturated fatty acids in various lipid species such as phosphatidylcholines and diacylglycerols in both cultured cells and HCT-116 xenografts. Treatment-associated lipidomic changes were followed by activated endoplasmic reticulum (ER) stress responses such as increased immunoglobulin heavy chain-binding protein expression in HCT-116 cells. These T-3764518-induced changes led to an increase in cleaved poly (ADP-ribose) polymerase 1 (PARP1), a marker of apoptosis. Additionally, bovine serum albumin conjugated with oleic acid, an SCD1 product, prevented cell growth inhibition and ER stress responses by T-3764518, indicating that these outcomes were not attributable to off-target effects. These results indicate that T-3764518 is a promising new anticancer drug candidate.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Enzyme Inhibitors/pharmacology , Oxadiazoles/pharmacology , Oxadiazoles/pharmacokinetics , Pyridazines/pharmacology , Pyridazines/pharmacokinetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Xenograft Model Antitumor Assays , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endoplasmic Reticulum Stress/drug effects , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fatty Acids/metabolism , HCT116 Cells , Humans , Mice , Oxadiazoles/administration & dosage , Oxadiazoles/metabolism , Pyridazines/administration & dosage , Pyridazines/metabolism , Stearoyl-CoA Desaturase/metabolism
5.
Chem Asian J ; 3(8-9): 1415-21, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18633953

ABSTRACT

Actinopyrone A, an anti-Helicobacter pylori agent, was synthesized in nine steps from a silyl dienol ether. A vinylogous anti-aldol was stereoselectively synthesized by our developed remote stereoinduction methodology; coupling of this with a sulfone and a phosphonate species led to the construction of a vinylpyrone compound. This was submitted to reductive de-conjugation to give actinopyrone A. The absolute stereochemistry of actinopyrone A was determined to have the configuration 14R,15R.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Helicobacter pylori/drug effects , Pyrones/chemical synthesis , Pyrones/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , Molecular Structure , Pyrones/chemistry
6.
Chem Pharm Bull (Tokyo) ; 50(12): 1542-9, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12499587

ABSTRACT

Direct compression is able to produce tablets at a lower cost than wet granulation and tableting method, due to a fewer items of process validation. In this study, acetaminophen was used as a medicine with various granular diameters to formulate tablets by direct compression, thus evaluating their physical properties. Consequently, direct compression was found effective in formulating tablets with excellent physical properties, with the granular diameter taken into account. It was confirmed that tablets produced by direct compression were similar in physical properties in tablets produced by wet granulation and tableting method. Further, it was suggested that use of a dry-type binder would make it possible to provide a tablet having higher content of the medicine with excellent physical properties.


Subject(s)
Acetaminophen/chemistry , Analgesics, Non-Narcotic/chemistry , Drug Compounding/methods , Compressive Strength , Drug Compounding/instrumentation , Excipients , Hardness Tests , Materials Testing , Models, Chemical , Powders , Solubility , Stress, Mechanical , Surface Properties , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...