Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biosens Bioelectron ; 254: 116200, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518562

ABSTRACT

Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Semiconductors , Adenosine Triphosphate
2.
Nanophotonics ; 11(12): 2827-2863, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35880114

ABSTRACT

Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.

3.
Nanoscale Adv ; 3(14): 4119-4132, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34355118

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) pathogenesis is believed to be the production and deposition of amyloid-beta (Aß) peptide into extracellular plaques. Existing research indicates that extracellular vesicles (EVs) can carry Aß associated with AD. However, characterization of the EVs-associated Aß and its conformational variants has yet to be realized. Raman spectroscopy is a label-free and non-destructive method that is able to assess the biochemical composition of EVs. This study reports for the first time the Raman spectroscopic fingerprint of the Aß present in the molecular cargo of small extracellular vesicles (sEVs). Raman spectra were measured from sEVs isolated from Alzheimer's disease cell culture model, where secretion of Aß is regulated by tetracycline promoter, and from midbrain organoids. The averaged spectra of each sEV group showed considerable variation as a reflection of the biochemical content of sEVs. Spectral analysis identified more intense Raman peaks at 1650 cm-1 and 2930 cm-1 attributable to the Aß peptide incorporated in sEVs produced by the Alzheimer's cell culture model. Subsequent analysis of the spectra by principal component analysis differentiated the sEVs of the Alzheimer's disease cell culture model from the control groups of sEVs. Moreover, the results indicate that Aß associated with secreted sEVs has a α-helical secondary structure and the size of a monomer or small oligomer. Furthermore, by analyzing the lipid content of sEVs we identified altered fatty acid chain lengths in sEVs that carry Aß that may affect the fluidity of the EV membrane. Overall, our findings provide evidence supporting the use of Raman spectroscopy for the identification and characterization of sEVs associated with potential biomarkers of neurological disorders such as toxic proteins.

4.
Biomed Opt Express ; 11(9): 4942-4959, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33014592

ABSTRACT

We present for the first time a lens-free, oblique illumination imaging platform for on-sensor dark- field microscopy and shadow-based 3D object measurements. It consists of an LED point source that illuminates a 5-megapixel, 1.4 µm pixel size, back-illuminated CMOS sensor at angles between 0° and 90°. Analytes (polystyrene beads, microorganisms, and cells) were placed and imaged directly onto the sensor. The spatial resolution of this imaging system is limited by the pixel size (∼1.4 µm) over the whole area of the sensor (3.6×2.73 mm). We demonstrated two imaging modalities: (i) shadow imaging for estimation of 3D object dimensions (on polystyrene beads and microorganisms) when the illumination angle is between 0° and 85°, and (ii) dark-field imaging, at >85° illumination angles. In dark-field mode, a 3-4 times drop in background intensity and contrast reversal similar to traditional dark-field imaging was observed, due to larger reflection intensities at those angles. With this modality, we were able to detect and analyze morphological features of bacteria and single-celled algae clusters.

5.
J Mater Chem B ; 8(38): 8845-8852, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33026405

ABSTRACT

Using a regular CMOS sensor as a template, we are able to fabricate a simple but highly effective superhydrophobic SERS substrate. Specifically, we decorated the microlens layer of the sensor with 7 µm polystyrene beads to obtain a PDMS patterned replica. The process resulted in a uniform pattern of voids in the PDMS (denoted nanobowls) that are intercalated with a few larger voids (denoted here microbowls). The voids act as superhydrophobic substrates with analyte concentration capabilities in bigger bowl-like structures. Silver nanoparticles were directly grown on the patterned PDMS substrate inside both the nano- and microbowls, and serve as strong electromagnetic field enhancers for the SERS substrate. After systematic characterization of the fabricated SERS substrate by atomic force microscopy and scanning electron microscopy, we demonstrated its SERS performance using 4-aminothiophenol as a reporter molecule. Finally, we employed this innovative substrate to concentrate and analyze extracellular vesicles (EVs) isolated from an MC65 neural cell line in an ultralow sample volume. This substrate can be further exploited for the investigation of various EV biomarkers for early diagnosis of different diseases using liquid biopsy.


Subject(s)
Dimethylpolysiloxanes/chemistry , Extracellular Vesicles/metabolism , Metal Nanoparticles/chemistry , Optical Devices , Polystyrenes/chemistry , Aniline Compounds/chemistry , Cell Line, Tumor , Extracellular Vesicles/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Silver/chemistry , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/chemistry
6.
Bosn J Basic Med Sci ; 20(4): 539-546, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32651972

ABSTRACT

The emerging evidence indicates that single nucleotide polymorphisms (SNPs) of the tumor necrosis factor (TNF), interleukin 10 (IL10), tumor protein p53 (TP53), and cluster of differentiation 14 (CD14) genes may determine individual susceptibility to gastric cancer (GC). We aimed to investigate the associations for polymorphisms of the TNF, IL10, TP53, and CD14 genes in a population of Kazakhs, to identify potential risk or protective associations of the SNPs with GC. A case group of 143 patients hospitalized for GC was enrolled. Controls were 355 volunteers with no history of any cancer and frequency matched with cases by age. Differences in proportions for categorical variables and the assessment of genotypic frequencies conforming to the Hardy-Weinberg equilibrium law were evaluated by the Chi-square test. Associations between genetic polymorphisms and the risk of GC were estimated by regression analysis. For genetic analysis, three genetic models (additive, dominant, and recessive) were used. Four significant associations were found. The SNPs rs1042522 of TP53 and rs1800896 of IL10 were risk factors for GC by the additive model. Two polymorphisms of IL10 were protective of GC, namely, rs1800872 by additive model and rs1800871 by recessive model. No significant associations were observed between the TNF and CD14 polymorphisms and GC. The polymorphisms TP53 rs1042522 and IL10 rs1800896 are associated with GC risk, while the polymorphisms IL10 rs1800872 and rs1800871 are protective of GC in the population of Kazakhs.


Subject(s)
Genetic Predisposition to Disease , Interleukin-10/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Stomach Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Cytokines/metabolism , Female , Genotype , Geography , Haplotypes , Healthy Volunteers , Humans , Kazakhstan/epidemiology , Male , Middle Aged , Polymorphism, Genetic , Regression Analysis , Risk , Risk Factors , Stomach Neoplasms/epidemiology , Young Adult
7.
ACS Sens ; 2(11): 1644-1652, 2017 11 22.
Article in English | MEDLINE | ID: mdl-28991491

ABSTRACT

Cytokines are small proteins secreted by immune cells in response to pathogens/infections; therefore, these proteins can be used in diagnosing infectious diseases. For example, release of a cytokine interferon (IFN)-γ from T-cells is used for blood-based diagnosis of tuberculosis (TB). Our lab has previously developed an atpamer-based electrochemical biosensor for rapid and sensitive detection of IFN-γ. In this study, we explored the use of silicon nanowires (NWs) as a way to create nanostructured electrodes with enhanced sensitivity for IFN-γ. Si NWs were covered with gold and were further functionalized with thiolated aptamers specific for IFN-γ. Aptamer molecules were designed to form a hairpin and in addition to terminal thiol groups contained redox reporter molecules methylene blue. Binding of analyte to aptamer-modified NWs (termed here nanowire aptasensors) inhibited electron transfer from redox reporters to the electrode and caused electrochemical redox signal to decrease. In a series of experiments we demonstrate that NW aptasensors responded 3× faster and were 2× more sensitive to IFN-γ compared to standard flat electrodes. Most significantly, NW aptasensors allowed detection of IFN-γ from as few as 150 T-cells/mL while ELISA did not pick up signal from the same number of cells. One of the challenges faced by ELISA-based TB diagnostics is poor performance in patients whose T-cell numbers are low, typically HIV patients. Therefore, NW aptasensors developed here may be used in the future for more sensitive monitoring of IFN-γ responses in patients coinfected with HIV/TB.


Subject(s)
Aptamers, Nucleotide/metabolism , Electrochemistry/instrumentation , Interferon-gamma/analysis , Nanotechnology/instrumentation , Nanowires , Electrodes , Humans , Interferon-gamma/metabolism , Jurkat Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...