Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(1): 1659-1674, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38108601

ABSTRACT

Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks' simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks' solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks' solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks' solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer.


Subject(s)
Alloys , Magnesium , Materials Testing , Magnesium/chemistry , Alloys/chemistry , Sodium Chloride , Serum Albumin, Bovine , Stents , Corrosion
2.
Biomed Mater ; 18(1)2022 12 05.
Article in English | MEDLINE | ID: mdl-36395511

ABSTRACT

The biodegradation rate of Mg alloy medical devices, such as screws and plates for temporary bone fracture fixation or coronary angioplasty stents, is an increasingly important area of study.In vitromodels of the corrosion behavior of these devices use revised simulated body fluid (m-SBF) based on a healthy individual's blood chemistry. Therefore, model outputs have limited application to patients with altered blood plasma glucose or protein concentrations. This work studies the biodegradation behavior of Mg alloy WE43 in m-SBF modified with varying concentrations of glucose and bovine serum albumin (BSA) to (1) mimic a range of disease states and (2) determine the contributions of each biomolecule to corrosion. Measurements include the Mg ion release rate, electrolyte pH, the extent of hydrogen evolution (as a proxy for corrosion rate), surface morphology, and corrosion product composition and effects. BSA (0.1 g l-1) suppresses the rate of hydrogen evolution (about 30%) after 24 h and-to a lesser degree-Mg2+release in both the presence and absence of glucose. This effect gets more pronounced with time, possibly due to BSA adsorption on the Mg surface. Electrochemical studies confirm that adding glucose (2 g l-1) to the solution containing BSA (0.1 g l-1) caused a decrease in corrosion resistance (by around 40%), and concomitant increase in the hydrogen evolution rate (from 10.32 to 11.04 mg cm-2d-1) to levels far beyond the tolerance limits of live tissues.


Subject(s)
Body Fluids , Serum Albumin , Humans , Glucose , Alloys , Serum Albumin, Bovine , Hydrogen
3.
Langmuir ; 38(35): 10854-10866, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35994730

ABSTRACT

The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.


Subject(s)
Alloys , Magnesium , Corrosion , Humans , Magnesium/chemistry , Magnesium Oxide , Materials Testing , Oxides , Sodium Chloride , Surface Properties
4.
Sci Rep ; 12(1): 11589, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804164

ABSTRACT

This study explores the effect of surface re-finishing on the corrosion behavior of electron beam manufactured (EBM) Ti-G5 (Ti-6Al-4V), including the novel application of an electron beam surface remelting (EBSR) technique. Specifically, the relationship between material surface roughness and corrosion resistance was examined. Surface roughness was tested in the as-printed (AP), mechanically polished (MP), and EBSR states and compared to wrought (WR) counterparts. Electrochemical measurements were performed in chloride-containing media. It was observed that surface roughness, rather than differences in the underlying microstructure, played a more significant role in the general corrosion resistance in the environment explored here. While both MP and EBSR methods reduced surface roughness and enhanced corrosion resistance, mechanical polishing has many known limitations. The EBSR process explored herein demonstrated positive preliminary results. The surface roughness (Ra) of the EBM-AP material was considerably reduced by 82%. Additionally, the measured corrosion current density in 0.6 M NaCl for the EBSR sample is 0.05 µA cm-2, five times less than the value obtained for the EBM-AP specimen (0.26 µA cm-2).

5.
ISA Trans ; 85: 84-96, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30392722

ABSTRACT

Stability analysis is an essential issue in Min-Max multiregulator control strategy for commercial aircraft engines. In this paper, a Min-Max selector scheme along with a stability analysis method is provided for aeroengine propulsion control. It is assumed that the main regulator is a dynamic compensator and the limit regulators are constant gains. The regulators are determined in such a way that the individual control loops are stable. However, due to the switching nature of Min-Max structure, the stability of single loops does not necessarily ensure the overall system stability. In order to analyze the stability of the presented Min-Maxapproach, the architecture of the control system is transformed into the canonical form of Lure's system and the condition for absolute stability is specified using Multivariable Circle Criterion. The theoretical results can also be applied to investigate the stability of min-only or max-only schemes. Afterwards, using the provided methodology, the global asymptotic stability is proved for the control system of a high bypass two-spool turbofan engine and the performance of the designed Min-Max controller in tracking a desired fan speed and limit protection in fault-free and fault tolerant situations is compared with the well-known Min-Max/SMC approach.

6.
Materials (Basel) ; 11(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257472

ABSTRACT

The effect of microstructure on corrosion behavior of a solid-state explosion welded Ti-Cu bimetal is investigated by means of alternating current-direct current (AC-DC) electrochemical measurements, optical microscopy, scanning electron microscopy, and scanning Kelvin probe force microscopy (SKPFM). The results indicate that the titanium regions in the welding interface, local melted zone (LMZ), and LMZ-Cu interface are potential sites for initiation of corrosion attacks. SKPFM mapping clearly shows that before exposure of the sample to a 3.5% NaCl corrosive solution and at the beginning of the exposure, the Cu side of the bimetal has a higher Volta potential in comparison to that of the Ti region, and thus acts as a cathode. Electrochemical measurements also confirm that titanium acts as an anode and copper as a cathode, in the first moments of immersion, in accordance with macroscopic observations and SKPFM results. However, by growing a passive layer of titanium oxide and titanium hydroxide on the Ti side after about 1 h exposure to the corrosive medium, the titanium side becomes nobler and the polarity arrangement in the galvanic couple reverses.

SELECTION OF CITATIONS
SEARCH DETAIL
...