Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vet World ; 17(3): 518-526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38680136

ABSTRACT

Background and Aim: Hermetia illucens, a black soldier fly, is widely recognized for sustainable recycling of organic waste. Black soldier fly larvae (BSFLs) can consume various types of biowastes and convert them into nutrient-rich biomass, including proteins, lipids, chitin, and minerals. This study investigated the best extraction method by comparing the fatty acid profiles, percentage yield, and antioxidant properties of BSFL oil extracted using different extraction methods. Materials and Methods: The physicochemical properties, fatty acid profile, and free radical scavenging ability of BSFL oil were analyzed using six extraction methods. Results: Ultrasonic extraction with hexane resulted in the highest yields compared with different extraction methods. Lauric acid (28%-37%) was the most abundant fatty acid in all extracts, followed by palmitic acid, myristic acid, oleic acid, and linoleic acid. Compared with other methods, aqueous extraction showed the highest lauric acid composition and free radical scavenging activities. In addition, high-temperature aqueous extraction resulted in higher oil yield and free radical scavenging activities than low-temperature extraction. Conclusion: High-temperature aqueous extraction is the best extraction method because it is rich in lauric acid, has antioxidant ability, and can be further developed to produce novel sustainable biomaterials for humans and animals.

2.
Malar J ; 22(1): 105, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959593

ABSTRACT

BACKGROUND: New anti-malarial drugs are needed urgently to address the increasing challenges of drug-resistant falciparum malaria. Two rhinacanthin analogues containing a naphthoquinone moiety resembling atovaquone showed promising in-vitro activity against a P. falciparum laboratory reference strain (K1). The anti-malarial activity of these 2 compounds was further evaluated for P. falciparum field isolates from an area of multi-drug resistance in Northeast Thailand. METHODS: Using a pLDH enzyme-linked immunosorbent assay, four P. falciparum isolates from Northeast Thailand in 2018 were tested for in vitro sensitivity to the two synthetic rhinacanthin analogues 1 and 2 as well as established anti-malarials. Mutations in the P. falciparum cytochrome b gene, a marker for atovaquone (ATQ) resistance, were genotyped in all four field isolates as well as 100 other clinical isolates from the same area using PCR-artificial Restriction Fragment Length Polymorphisms. Pfkelch13 mutations, a marker for artemisinin (ART) resistance, were also examined in all isolates. RESULTS: The 50% inhibitory concentrations (IC50) of P. falciparum field isolates for rhinacanthin analogue 1 was 321.9-791.1 nM (median = 403.1 nM). Parasites were more sensitive to analogue 2: IC50 48.6-63.3 nM (median = 52.2 nM). Similar results were obtained against P. falciparum reference laboratory strains 3D7 and W2. The ART-resistant IPC-5202 laboratory strain was more sensitive to these compounds with a median IC50 45.9 and 3.3 nM for rhinacanthin analogues 1 and 2, respectively. The ATQ-resistant C2B laboratory strain showed high-grade resistance towards both compounds (IC50 > 15,000 nM), and there was a strong positive correlation between the IC50 values for these compounds and ATQ (r = 0.83-0.97, P < 0.001). There were no P. falciparum cytochrome b mutations observed in the field isolates, indicating that P. falciparum isolates from this area remained ATQ-sensitive. Pfkelch13 mutations and the ring-stage survival assay confirmed that most isolates were resistant to ART. CONCLUSIONS: Two rhinacanthin analogues showed parasiticidal activity against multi-drug resistant P. falciparum isolates, although less potent than ATQ. Rhinacanthin analogue 2 was more potent than analogue 1, and can be a lead compound for further optimization as an anti-malarial in areas with multidrug resistance.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Atovaquone/therapeutic use , Thailand , Cytochromes b/genetics , Malaria, Falciparum/parasitology , Drug Resistance
3.
Org Biomol Chem ; 20(25): 5050-5054, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35695066

ABSTRACT

Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.


Subject(s)
Polyketide Synthases , Triterpenes , Methylation , Polyenes/chemistry , Polyketide Synthases/metabolism
4.
Pharmaceutics ; 14(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631666

ABSTRACT

The first line therapy of patients with Parkinson's disease, a neurodegenerative disorder caused by the degeneration of dopaminergic neurons, is levodopa (L-dopa) given orally. Recently, the presence of natural L-dopa in the seed of Mucuna pruriens, a tropical legume in the Fabaceae family, was reported and it showed superior efficiency compared with synthetic L-dopa. Therefore, this study aimed to examine the phytochemical compounds, particularly for natural L-dopa, in M. pruriens seed extract and subsequently prepare a nanogel containing the extract prior to incorporation into a jelly formulation for use as a functional food in elderly patients with Parkinson's disease. The results show that M. pruriens seed extract contains phenolic compounds, flavonoids, tannins, alkaloids, terpenoids, and saponins. The quantitative analysis performed by the HPLC method revealed that spray-dried M. pruriens seed extract contained 5.59 ± 0.21% L-dopa. M. pruriens seed extract possesses a ferric-reducing antioxidant power and shows free-radical scavenging activity, determined by DPPH and ABTS methods, suggesting a distinctive antioxidant ability of the extract. M. pruriens seed extract at 10 ng/mL did not show cytotoxicity against a neuronal cell line (SH-SY5Y cells), kidney cells (HEK293 cells), or Caco-2 cells. Nanogel of M. pruriens seed extract prepared by ionic gelation had the hydrodynamic diameter, polydispersity index and zeta potential value of 384.53 ± 11.24 nm, 0.38 ± 0.05, and -11.23 ± 1.15 mV, respectively. The transepithelial transport of L-dopa in M. pruriens seed-extract nanogel through Caco-2 cells was measured. Nanogel containing M. pruriens seed extract at the concentration of 10 ng/mL exhibited neuroprotective activity. A jelly formulation containing M. pruriens seed-extract nanogel was successfully developed. The prepared jelly exhibited the acceptable physical and microbiological stabilities upon 6 months of the stability test. The half-life of natural L-dopa in jelly were 3.2, 0.9, and 0.6 years for storage conditions at 4, 30, and 40 °C, respectively, indicating the thermal degradation of natural L-dopa. The prepared jelly containing natural L-dopa from M. pruriens seed extract with the prominent antioxidant activity is a promising option for elderly patients suffering from Parkinson's disease.

5.
Data Brief ; 35: 106849, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33665249

ABSTRACT

In the present article, we describe the spectroscopic data of poly(amido)amine dendrimers generation 5.0 (G5 PAMAM) conjugated with LFC131 peptide at different specified reaction points. The raw data regarding the 1H NMR and mass spectra of G5 PAMAM dendrimers with and without LFC131 peptide conjugation and with or without FITC labelled are presented for comparison.

6.
Bioorg Chem ; 107: 104601, 2021 02.
Article in English | MEDLINE | ID: mdl-33476870

ABSTRACT

Acute lymphoblastic leukemia (ALL) or white blood cell cancer is one of the major causes that kills many children worldwide. Although various therapeutic agents are available for ALL treatment, the new drug discovery and drug delivery system are needed to improve their effectiveness, to reduce the toxicity and side-effect, and to enhance their selectivity to target cancer cells. CXCR4 is a protein expressed on the surface of various types of cancer cell including ALL. In this work, the CXCR4-targeted PAMAM dendrimer was constructed by conjugating G5 PAMAM with a CXCR4 antagonist, LFC131. The results revealed that the LFC131-conjugated G5 PAMAM selectively targeted CXCR4 expressing leukemic precursor B cells (NALM-6) and the migration of NALM-6 cells induced by SDF-1α was inhibited at non-cytotoxic concentration. Further research based on this findings may contribute to potential anti-metastatic drugs for lymphoblastic leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Dendrimers/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Survival/drug effects , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Receptors, CXCR4/antagonists & inhibitors , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Arch Biochem Biophys ; 509(1): 100-7, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21376010

ABSTRACT

Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase from Ceriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enzyme identified that catalyzes this reaction. Interestingly, CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC). We show that CsOxOx activity directly correlates with Mn content and other metals do not appear to be able to support catalysis. EPR spectra indicate that the Mn is present as Mn(II), and are consistent with the coordination environment expected from homology modeling with known X-ray crystal structures of OxDC from Bacillus subtilis. EPR spin-trapping experiments support the existence of an oxalate-derived radical species formed during turnover. Acetate and a number of other small molecule carboxylic acids are competitive inhibitors for oxalate in the CsOxOx catalyzed reaction. The pH dependence of this reaction suggests that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated.


Subject(s)
Oxidoreductases/metabolism , Polyporales/enzymology , Acetates/metabolism , Carboxylic Acids/metabolism , Electron Spin Resonance Spectroscopy , Gene Expression , Manganese/metabolism , Oxalates/metabolism , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Pichia/genetics , Polyporales/genetics , Substrate Specificity
8.
Free Radic Biol Med ; 50(8): 1009-15, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21277974

ABSTRACT

EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly (13)C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution.


Subject(s)
Carboxy-Lyases/metabolism , Free Radicals/metabolism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy
9.
Chem Commun (Camb) ; 47(11): 3111-3, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21264418

ABSTRACT

Membrane inlet mass spectrometry (MIMS) has been employed to assay the catalytic activity of oxalate decarboxylase (OxDC), allowing us to demonstrate that nitric oxide (NO) reversibly inhibits the enzyme under dioxygen-depleted conditions. X-band EPR measurements do not provide any direct evidence for the interaction of NO with either of the Mn(II) centers in OxDC raising the possibility that there is a separate dioxygen-binding pocket in the enzyme.


Subject(s)
Bacillus subtilis/enzymology , Carboxy-Lyases/antagonists & inhibitors , Nitric Oxide/chemistry , Biocatalysis , Carboxy-Lyases/metabolism , Electron Spin Resonance Spectroscopy , Manganese/chemistry , Mass Spectrometry , Protein Binding , Time Factors
10.
Free Radic Biol Med ; 49(2): 275-81, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20406679

ABSTRACT

Peroxynitrite is a reactive oxidant produced in vivo in response to oxidative and other stress by the diffusion-limited reaction of nitric oxide and superoxide. This article is focused on the identification of free radical intermediates of uric acid formed during its reaction with peroxynitrite. The experimental approach included the ESR spin trapping of the radical generated from the reaction between uric acid and peroxynitrite at pH 7.4 and mass spectrometry studies of the trapped radicals. Using PBN (N-tert-butyl-alpha-phenylnitrone) as the spin trapping agent, a six-line ESR spectrum was obtained and its hyperfine coupling constants, a(N)=15.6 G and a(H)=4.4 G, revealed the presence of carbon-based radicals. Further structural identification of the PBN-radical adducts was carried out using liquid chromatography-mass spectrometry. After comparison with the control reactions, two species were identified that correspond to the protonated molecules (M+1) at m/z 352 and 223, respectively. The ions of m/z 352 were characterized as the PBN-triuretcarbonyl radical adduct and the m/z 223 ion was identified as the PBN-aminocarbonyl radical adduct. Their mechanism of formation is discussed.


Subject(s)
Free Radicals/chemistry , Peroxynitrous Acid/chemistry , Uric Acid/chemistry , Chemical Phenomena , Chromatography, Liquid , Electron Spin Resonance Spectroscopy , In Vitro Techniques , Mass Spectrometry , Models, Chemical , Oxidation-Reduction , Protein Carbonylation , Uric Acid/analogs & derivatives , Uric Acid/isolation & purification
11.
Nucleosides Nucleotides Nucleic Acids ; 28(2): 118-49, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19219741

ABSTRACT

Hyperuricemia is associated with hypertension, metabolic syndrome, preeclampsia, cardio-vascular disease and renal disease, all conditions associated with oxidative stress. We hypothesized that uric acid, a known antioxidant, might become prooxidative following its reaction with oxidants; and, thereby contribute to the pathogenesis of these diseases. Uric acid and 1,3-(15)N(2)-uric acid were reacted with peroxynitrite in different buffers and in the presence of alcohols, antioxidants and in human plasma. The reaction products were identified using liquid chromatography-mass spectrometry (LC-MS) analyses. The reactions generate reactive intermediates that yielded triuret as their final product. We also found that the antioxidant, ascorbate, could partially prevent this reaction. Whereas triuret was preferentially generated by the reactions in aqueous buffers, when uric acid or 1,3-(15)N(2)-uric acid was reacted with peroxynitrite in the presence of alcohols, it yielded alkylated alcohols as the final product. By extension, this reaction can alkylate other biomolecules containing OH groups and others containing labile hydrogens. Triuret was also found to be elevated in the urine of subjects with preeclampsia, a pregnancy-specific hypertensive syndrome that is associated with oxidative stress, whereas very little triuret is produced in normal healthy volunteers. We conclude that under conditions of oxidative stress, uric acid can form reactive intermediates, including potential alkylating species, by reacting with peroxynitrite. These reactive intermediates could possibly explain how uric acid contributes to the pathogenesis of diseases such as the metabolic syndrome and hypertension.


Subject(s)
Antioxidants/metabolism , Hyperuricemia/metabolism , Peroxynitrous Acid/metabolism , Urea/analogs & derivatives , Uric Acid/metabolism , Antioxidants/chemistry , Female , Humans , Hyperuricemia/blood , Hyperuricemia/urine , Oxidants/metabolism , Oxidative Stress , Peroxynitrous Acid/chemistry , Pre-Eclampsia/metabolism , Pre-Eclampsia/urine , Pregnancy , Urea/metabolism , Urea/urine , Uric Acid/chemistry
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(1-2): 65-70, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19081307

ABSTRACT

Uric acid (UA) can be directly converted to allantoin enzymatically by uricase in most mammals except humans or by reaction with superoxide. UA can react directly with nitric oxide to generate 6-aminouracil and with peroxynitrite to yield triuret; both of these metabolites have been identified in biological samples. We now report a validated high-performance liquid chromatography and tandem mass spectrometry method for the determination of these urinary UA metabolites. Urine samples were diluted 10-fold, filtered and directly injected onto HPLC for LC-MS/MS analysis. The urinary metabolites of UA were separated using gradient HPLC. Identification and quantification of UA urinary metabolites was performed with electrospray in positive ion mode by selected-reaction monitoring (SRM). Correlation coefficients were 0.991-0.999 from the calibration curve. The intra- and inter-day precision (R.S.D., %) of the metabolites ranged from 0.5% to 13.4% and 2.5-12.2%, respectively. In normal individuals (n=21), urinary allantoin, 6-aminouracil and triuret, were 15.30 (+/-8.96), 0.22 (+/-0.12), and 0.12 (+/-0.10) microg/mg of urinary creatinine (mean (+/-S.D.)), respectively. The new method was used to show that smoking, which can induce oxidative stress, is associated with elevated triuret levels in urine. Thus, the method may be helpful in identifying pathways of oxidative stress in biological samples.


Subject(s)
Allantoin/urine , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Uracil/analogs & derivatives , Urea/analogs & derivatives , Calibration , Humans , Reference Standards , Reproducibility of Results , Uracil/urine , Urea/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...