Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Appl Toxicol ; 43(5): 649-661, 2023 05.
Article in English | MEDLINE | ID: mdl-36317230

ABSTRACT

Crystalline silica is an important cause of serious pulmonary diseases, and its toxic potential is known to be associated with its surface electrical properties. However, in vivo data clarifying the relevance of silica's toxic potential, especially its long-term effects, remain insufficient. To investigate the contribution of physico-chemical property including surface potential on the hazard of nanocrystalline silica, we performed single intratracheal instillation testing using five different crystalline silicas in a rat model and assessed time-course changes in pulmonary inflammation, lung burden, and thoracic lymph node loads. Silica-nanoparticles were prepared from two commercial products (Min-U-Sil5 [MS5] and SIO07PB [SPB]) using three different pretreatments: centrifugation (C), grinding (G), and surface dissolving (D). The five types of silica particles-MS5, MS5_C, SPB_C, SPB_G, and SPB_D-were intratracheally instilled into male F344 rats at doses of 0 mg/kg (purified water), 0.22 mg/kg (SPB), and 0.67, 2, or 6 mg/kg (MS5). Bronchoalveolar lavage, a lung burden analysis, and histopathological examination were performed at 3, 28, and 91 days after instillation. Granuloma formation was present in MS5 group at 91 days after instillation, although granuloma formation was suppressed in MS5_C group, which had a smaller particle size. SPB_C induced severe and progressive inflammation and kinetic lung overload, whereas SPB_G and SPB_D induced only slight and transient acute inflammation. Our results support that in vivo toxic potential of nanosilica by intratracheal instillation may involve with surface electrical properties leading to prolonged effect and may not be dependent not only on surface properties but also on other physico-chemical properties.


Subject(s)
Pneumonia , Silicon Dioxide , Rats , Male , Animals , Rats, Inbred F344 , Silicon Dioxide/adverse effects , Bronchoalveolar Lavage Fluid/chemistry , Lung , Pneumonia/chemically induced , Pneumonia/pathology , Inflammation/chemically induced , Inflammation/pathology , Granuloma/pathology , Intubation, Intratracheal
2.
J Toxicol Pathol ; 34(1): 43-55, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33627944

ABSTRACT

Occupational exposure to nickel oxide (NiO) is an important cause of respiratory tract cancer. Toxicity is known to be associated with the dissociated component, i.e. nickel (II) ions. To address the relationship between physicochemical properties, including solubility in artificial lysosomal fluid, of NiO and time-course changes in the pulmonary response, we conducted an intratracheal instillation study in male Fischer rats using four different well-characterized NiO products, US3352 (NiO A), NovaWireNi01 (NiO B), I small particle (NiO C), and 637130 (NiO D). The NiOs were suspended in purified water and instilled once intratracheally into male F344 rats (12 weeks old) at 0 (vehicle control), 0.67, 2, and 6 mg/kg body weight. The animals were euthanized on days 3, 28, or 91 after instillation, and blood analysis, bronchoalveolar lavage fluid (BALF) testing, and histopathological examination were performed. The most soluble product, NiO B, caused the most severe systemic toxicity, leading to a high mortality rate, but the response was transient and surviving animals recovered. The second-most-soluble material, NiO D, and the third, NiO A, caused evident pulmonary inflammation, and the responses persisted for at least 91 days with collagen proliferation. In contrast, NiO C induced barely detectable inflammation in the BALF examination, and no marked changes were noted on histopathology. These results indicate that the early phase toxic potential of NiO products, but not the persistence of pulmonary inflammation, is associated with their solubility.

3.
Part Fibre Toxicol ; 14(1): 48, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29183341

ABSTRACT

BACKGROUND: The toxicokinetics of nanomaterials are an important factor in toxicity, which may be affected by slow clearance and/or distribution in the body. METHODS: Four types of nickel oxide (NiO) nanoparticles were single-administered intratracheally to male F344 rats at three doses of 0.67-6.0 mg/kg body weight. The rats were sacrificed under anesthesia and the lung, thoracic lymph nodes, bronchoalveolar lavage fluid, liver, and other organs were sampled for Ni burden measurement 3, 28, and 91 days post-administration; Ni excretion was measured 6 and 24 h after administration. Solubility of NiO nanoparticles was determined using artificial lysosomal fluid, artificial interstitial fluid, hydrogen peroxide solution, pure water, and saline. In addition, macrophage migration to trachea and phagosome-lysosome-fusion rate constants were estimated using pulmonary clearance and dissolution rate constants. RESULTS: The wire-like NiO nanoparticles were 100% dissolved by 24 h when mixed with artificial lysosomal fluid (dissolution rate coefficient: 0.18/h); spherical NiO nanoparticles were 12% and 35% dissolved after 216 h when mixed with artificial lysosomal fluid (1.4 × 10-3 and 4.9 × 10-3/h). The largest irregular-shaped NiO nanoparticles hardly dissolved in any solution, including artificial lysosomal fluid (7.8 × 10-5/h). Pulmonary clearance rate constants, estimated using a one-compartment model, were much higher for the NiO nanoparticles with a wire-shape (0.069-0.078/day) than for the spherical and irregular-shaped NiO nanoparticles (0-0.012/day). Pulmonary clearance rate constants of the largest irregular-shaped NiO nanoparticles showed an inverse correlation with dose. Translocation of NiO from the lungs to the thoracic lymph nodes increased in a time- and dose-dependent manner for three spherical and irregular-shaped NiO nanoparticles, but not for the wire-like NiO nanoparticles. Thirty-five percent of the wire-like NiO nanoparticles were excreted in the first 24 h after administration; excretion was 0.33-3.6% in that time frame for the spherical and irregular-shaped NiO nanoparticles. CONCLUSION: These findings suggest that nanomaterial solubility differences can result in variations in their pulmonary clearance. Nanoparticles with moderate lysosomal solubility may induce persistent pulmonary inflammation.


Subject(s)
Lung/metabolism , Nickel/pharmacokinetics , Administration, Inhalation , Animals , Lung/drug effects , Lymph Nodes/metabolism , Lysosomes/chemistry , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Models, Biological , Nickel/administration & dosage , Nickel/chemistry , Nickel/toxicity , Particle Size , Pneumonia/chemically induced , Pneumonia/metabolism , Rats, Inbred F344 , Solubility , Tissue Distribution , Toxicokinetics
4.
Toxicology ; 389: 55-66, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28688903

ABSTRACT

This study was performed to compare the exposure effects of N-methyl-N-nitrosourea (MNU), a cytocidal agent of proliferating cells, on rat hippocampal neurogenesis between developmental and postpubertal periods. Developmental exposure through maternal drinking water from gestational day 6 to day 21 after delivery on weaning decreased GFAP-immunoreactive (+) stem cells and increased immunoreactive cells indicative of subsequent progenitor and postmitotic immature neuronal populations, TUNEL+ or p21Cip1/Waf1+ stem/progenitor cells and COX2+ granule cells, on postnatal day (PND) 21. On PND 77 after cessation of developmental exposure, NeuN+ postmitotic granule cells decreased in number. Postpubertal exposure by oral gavage for 28days decreased the numbers of all granule cell lineage populations and ARC+ or COX2+ granule cells and increased the number of TUNEL+ stem/progenitor cells. These results suggested that both developmental and postpubertal exposure caused apoptosis of stem/progenitor cells. However, developmental exposure increased COX2 expression to facilitate intermediate progenitor cell proliferation and increased neuronal plasticity. This effect was concurrent with the induction of p21Cip1/Waf1 that causes cell cycle arrest of stem/progenitor cells in response to accumulating DNA damage on weaning, resulting in a subsequent reduction of postmitotic granule cells. In contrast, postpubertal exposure suppressed neuronal plasticity as evidenced by downregulation of ARC and COX2. The COX2 downregulation was responsible for the lack of facilitating stem/progenitor cell proliferation. Induction of apoptosis and the lack of cell proliferation facilitation may be responsible for the overall reduction of neurogenesis caused by postpubertal exposure. Thus, the disrupted pattern of hippocampal neurogenesis induced by MNU is different between developmental and postpubertal exposure.


Subject(s)
Cell Proliferation/drug effects , Cyclooxygenase 2/metabolism , Hippocampus/drug effects , Maternal Exposure/adverse effects , Methylnitrosourea/toxicity , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Age Factors , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Developmental/drug effects , Gestational Age , Hippocampus/enzymology , Hippocampus/pathology , Male , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neuronal Plasticity/drug effects , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors
6.
Neurotox Res ; 31(1): 46-62, 2017 01.
Article in English | MEDLINE | ID: mdl-27566479

ABSTRACT

Valproic acid (VPA) is used to establish models of experimental autism. The present study investigated the developmental exposure effect of VPA on postnatal hippocampal neurogenesis in accordance with the exposure scheme of OECD Test Guideline 426 adopted for developmental neurotoxicity. Pregnant rats were administered drinking water containing 0, 667, or 2000 ppm VPA from gestational day 6 until day 21 post-delivery. In the subgranular zone (SGZ) and granule cell layer (GCL) of offspring, the number of granule cell lineage subpopulations remained unchanged upon weaning. However, in the hilus of the dentate gyrus, the number of reelin+ interneurons decreased at ≥667 ppm, and the number of PVALB+ or GAD67+ interneurons decreased at 2000 ppm. Conversely, Reln and Gad1 transcript levels increased at 2000 ppm, but Pvalb and Grin2d decreased, in the dentate gyrus. At the adult stage, PCNA+ proliferating SGZ cells, NeuN+ postmitotic SGZ/GCL neurons, and ARC+ or COX2+ GCL neurons increased at ≥667 ppm. In the dentate hilus, decreases in GAD67+ interneuron subpopulations and Grin2d transcript levels sustained at 2000 ppm. These results suggested that VPA primarily targets interneurons by developmental exposure, and this is followed by late effects on granule cell lineages, likely by influencing SGZ cell proliferation and synaptic plasticity. A reduced population of reelin+ or PVALB+ interneurons did not affect distribution of granule cell lineage subpopulations upon weaning. The late effect on neurogenesis, which resulted in increased GCL neurons, might be the result of a sustained decrease in GAD67+ interneurons expressing NR2D encoded by Grin2d.


Subject(s)
Dentate Gyrus/drug effects , Interneurons/drug effects , Maternal Exposure , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects , Valproic Acid/toxicity , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Movement/drug effects , Cerebellar Cortex/drug effects , Cerebellar Cortex/growth & development , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dentate Gyrus/growth & development , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Models, Animal , Drinking Water , Female , Interneurons/metabolism , Interneurons/pathology , Male , Neurogenesis/physiology , Pregnancy , Random Allocation , Rats , Reelin Protein , Stem Cell Niche/drug effects , Stem Cell Niche/physiology
7.
J Appl Toxicol ; 37(4): 502-507, 2017 04.
Article in English | MEDLINE | ID: mdl-27714835

ABSTRACT

Intratracheal administration methods are used to conduct toxicological assessments of inhaled nanoparticles (NPs), and gavage needles or microsprayers are common intratracheal delivery devices. The NP suspension is delivered in a liquid state via gavage needle and as a liquid aerosol via microsprayer. The differences in local pulmonary NP distribution (called the microdistribution) arising from the different states of the NP suspension cause differential pulmonary responses; however, this has yet to be investigated. Herein, using microbeam X-ray fluorescence microscopy, we quantitatively evaluated the TiO2 pulmonary microdistribution (per mesh: 100 µm × 100 µm) in lung sections from rats administered an intratracheal dose of TiO2 NPs (6 mg kg-1 ) via gavage needle or microsprayer. The results revealed that: (i) using a microsprayer appears to reduce the variations in TiO2 content (ng mesh-1 ) among rats (e.g., coefficients of variation, n = 3, microsprayer vs gavage needle: 13% vs 30%, for the entire lungs); (ii) TiO2 appears to be deposited less in the right middle lobes than in the rest of the lung lobes, irrespective of the chosen intratracheal delivery device; and (iii) similar TiO2 contents (ng mesh-1 ) and frequencies are deposited in the lung lobes of rats administered TiO2 NPs via gavage needle or microsprayer. This suggests that the physical state of the administered NP suspension does not markedly alter TiO2 pulmonary microdistribution. The results of this investigation are important for the standardization of intratracheal administration methods. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Lung/metabolism , Metal Nanoparticles , Administration, Inhalation , Animals , Drug Delivery Systems , Injections, Spinal , Male , Metal Nanoparticles/administration & dosage , Microscopy, Fluorescence , Needles , Rats , Rats, Inbred F344 , Suspensions , Titanium/administration & dosage , Titanium/metabolism
8.
J Toxicol Sci ; 41(5): 595-604, 2016.
Article in English | MEDLINE | ID: mdl-27665769

ABSTRACT

Bronchoalveolar lavage fluid (BALF) is commonly examined for pulmonary toxicity in animal studies. Two common means of anesthesia before euthanasia and bronchoalveolar lavage in rats are intraperitoneal injection of pentobarbital and inhalation of isoflurane. Medetomidine-midazolam-butorphanol is an alternative anesthesia to pentobarbital for animal welfare; however, the effect of this combination on BALF and blood chemistry is unknown. Here, we compared the effects of anesthesia by intraperitoneal injection of pentobarbital or one of two combinations of medetomidine-midazolam-butorphanol (dose, 0.375-2.0-2.5 or 0.15-2.0-2.5 mg/kg) or by inhalation of isoflurane on BALF and blood chemistry in rats with or without pulmonary inflammation. In BALF, we determined total protein, albumin, lactate dehydrogenase, total cell count and neutrophil count. In serum, we conducted a general chemistry screen. After anesthesia with pentobarbital or isoflurane, there were no significant differences between any of the BALF or blood chemistry parameters with or without inflammation. After anesthesia with either of the combinations of medetomidine-midazolam-butorphanol, lactate dehydrogenase, total cell count, neutrophil count, and almost all of the blood chemistry parameters were comparable with those observed after pentobarbital or isoflurane; however, BALF albumin and serum glucose were significantly increased in rats without inflammation. After the combination of low-dose medetomidine in rats with inflammation, BALF parameters were comparable with those observed after pentobarbital or isoflurane. Our results show that, of the anesthetics examined, inhalation of isoflurane is the most appropriate means of anesthesia when examining BALF or serum for toxicity studies in rats.


Subject(s)
Analgesics, Opioid/administration & dosage , Anesthesia/methods , Anesthetics, Inhalation/administration & dosage , Bronchoalveolar Lavage Fluid/chemistry , Butorphanol/administration & dosage , Hypnotics and Sedatives/administration & dosage , Isoflurane/administration & dosage , Lung/drug effects , Medetomidine/administration & dosage , Midazolam/administration & dosage , Pentobarbital/administration & dosage , Administration, Inhalation , Analgesics, Opioid/adverse effects , Anesthesia/adverse effects , Anesthetics, Inhalation/toxicity , Animals , Biomarkers/blood , Bronchoalveolar Lavage Fluid/immunology , Butorphanol/toxicity , Disease Models, Animal , Hypnotics and Sedatives/toxicity , Injections, Intraperitoneal , Isoflurane/toxicity , Lung/immunology , Lung/metabolism , Male , Medetomidine/toxicity , Midazolam/toxicity , Nickel , Pentobarbital/toxicity , Pneumonia/blood , Pneumonia/chemically induced , Pneumonia/immunology , Rats, Inbred F344 , Risk Assessment
9.
Regul Toxicol Pharmacol ; 81: 233-241, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27586790

ABSTRACT

The intratracheal (IT) test is useful for screening the pulmonary toxicity of inhaled materials, including nanomaterials. However, a standard procedure has not yet been authorized internationally, and the effects of different test parameters are unknown. To determine appropriate experimental conditions for the IT test, we intratracheally administered nano-sized TiO2 to male F344 rats at 3.0 mg/kg body weight by using two delivery devices (gavage needle or microaerosolizer) and dose volumes of 0.5-3.0 mL/kg (gavage needle) or 0.5-2.0 mL/kg (microaerosolizer). We evaluated the pulmonary deposition and interlobar distribution of TiO2 at both 30 min and 3 days after administration. In addition, the inflammatory components in bronchoalveolar lavage (BAL) fluid were measured 3 days after administration of TiO2. At dose volumes of 0.5-2.0 mL/kg, the BAL values were comparable regardless of the device used. In addition, pulmonary TiO2 burden and lobar concentration patterns were equivalent at all combinations of dose volume and delivery device. In conclusion, the acute pulmonary toxicity of nanomaterials can be assessed effectively by using an IT test in which the test agent is provided to rats at a dose volume of 0.5-2.0 mL/kg with either a gavage needle or microaerosolizer.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Drug Delivery Systems , Nanoparticles/administration & dosage , Nanoparticles/toxicity , Titanium/administration & dosage , Titanium/toxicity , Trachea/metabolism , Administration, Inhalation , Animals , Bronchoalveolar Lavage , Dose-Response Relationship, Drug , Inflammation/chemically induced , Inflammation/metabolism , Male , Nanoparticles/chemistry , Rats , Rats, Inbred F344 , Titanium/chemistry , Trachea/drug effects
10.
Toxicol Lett ; 261: 59-71, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27553673

ABSTRACT

6-Propyl-2-thiouracil (PTU)-induced hypothyroidism disrupts neuronal/glial development. This study sought to identify the sensitive immunohistochemical parameters of developmental neurotoxicity (DNT) following PTU-exposure, as well as their responses in a 28-day toxicity study in adults. In the developmental exposure study, pregnant rats were treated with 0, 1, 3, and 10ppm PTU in drinking water from gestational day 6 to postnatal day (PND) 21 and pups were examined on PNDs 21 and 77. In the adult-stage exposure study, 5-week-old male rats were treated with 0, 0.1 and 10mg PTU/kg by oral gavage for 28 days. In the developmental exposure study on PND 21, there were fewer GFAP+, PAX6+, and DCX+ cells in the subgranular zone (SGZ) of the hippocampal dentate gyrus at ≥3 or 10ppm. Regarding synaptic plasticity-related molecules, there were fewer EPHA4+ and ARC+ cells in the dentate granule cell layer. Regarding GABAergic interneuron subpopulations, there were more RELN+, CALB2+, and SST+ cells and fewer PVALB+ cells in the dentate hilus. There were also differences in the numbers of RELN+, PVALB+, CALB2+, and NPY+ cells in the cerebral cortex, and RELN+, PVALB+, and SST+ cells in the cerebellar cortex. Most of these changes were sustained until PND 77. Following adult-stage exposure (10mg/kg), there were fewer SGZ DCX+ cells, but more RELN+ and SST+ cells in the dentate hilus. Results suggest that GABAergic interneuron populations in cortical tissues, hippocampal neurogenesis, and synaptic plasticity are sensitive to PTU-induced DNT during development. In contrast, only hippocampal neurogenesis was sensitive to adult-stage exposure.


Subject(s)
Neurogenesis/drug effects , Neurons/drug effects , Propylthiouracil/toxicity , Animals , Biomarkers , Doublecortin Protein , Female , Hypothyroidism , Male , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Reelin Protein
11.
Toxicol Appl Pharmacol ; 310: 20-31, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27523638

ABSTRACT

Both developmental and postpubertal cuprizone (CPZ) exposure impairs hippocampal neurogenesis in rats. We previously found that developmental CPZ exposure alters the expression of genes related to neurogenesis, myelination, and synaptic transmission in specific brain regions of offspring. Here, we examined neuronal and glial toxicity profiles in response to postpubertal CPZ exposure by using expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis of 5-week-old male rats exposed to 0, 120, and 600mg/kg CPZ for 28days. Genes showing transcript upregulation were subjected to immunohistochemical analysis. We found transcript expression alterations at 600mg/kg for genes related to synaptic transmission, Ache and Prima1, and cell cycle regulation, Tfap4 and Cdkn1a, in the dentate gyrus, which showed aberrant neurogenesis in the subgranular zone. This dose downregulated myelination-related genes in multiple brain regions, whereas KLOTHO+ oligodendrocyte density was decreased only in the corpus callosum. The corpus callosum showed an increase in transcript levels for inflammatory response-related genes and in the number of CD68+ microglia, MT+ astrocytes, and TUNEL+ apoptotic cells. These results suggest that postpubertal CPZ exposure targets synaptic transmission and cell cycle regulation to affect neurogenesis in the dentate gyrus. CPZ suppressed myelination in multiple brain regions and KLOTHO-mediated oligodendrocyte maturation only in the corpus callosum. The increased number of CD68+ microglia, MT+ astrocytes, and TUNEL+ apoptotic cells in the corpus callosum may be involved in the induction of KLOTHO+ oligodendrocyte death and be a protective mechanism against myelin damage following CPZ exposure.


Subject(s)
Brain/metabolism , Cuprizone/pharmacology , Gene Expression Profiling , Myelin Sheath/drug effects , Neuroglia/drug effects , Neurons/drug effects , Animals , Male , Rats , Rats, Sprague-Dawley
12.
Toxicol Appl Pharmacol ; 290: 10-20, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26577399

ABSTRACT

Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells.


Subject(s)
Cell Lineage/drug effects , Cuprizone/toxicity , Neurogenesis/drug effects , Neuronal Plasticity/drug effects , Oligodendroglia/drug effects , Animals , Animals, Newborn , Apoptosis/drug effects , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Down-Regulation , Female , Gene Expression Profiling , Glucuronidase/genetics , Glucuronidase/metabolism , Klotho Proteins , Male , Oligodendroglia/cytology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Sprague-Dawley , Synaptic Transmission , White Matter/cytology , White Matter/drug effects , White Matter/metabolism , gamma-Aminobutyric Acid/metabolism
13.
J Appl Toxicol ; 36(1): 24-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25825206

ABSTRACT

We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects.


Subject(s)
Dentate Gyrus/metabolism , Gene Expression Profiling , Hypothyroidism/physiopathology , Neurogenesis , Animals , Brain/drug effects , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Toxicity Tests
14.
Toxicol Rep ; 3: 490-500, 2016.
Article in English | MEDLINE | ID: mdl-28959572

ABSTRACT

A potentially useful means of predicting the pulmonary risk posed by new forms of nano-structured titanium dioxide (nano-TiO2) is to use the associations between the physicochemical properties and pulmonary toxicity of characterized forms of TiO2. In the present study, we conducted intratracheal administration studies in rats to clarify the associations between the physicochemical characteristics of seven characterized forms of TiO2 and their acute or subacute pulmonary inflammatory toxicity. Examination of the associations between the physicochemical characteristics of the TiO2 and the pulmonary inflammatory responses they induced revealed (1) that differences in the crystallinity or shape of the TiO2 particles were not associated with the acute pulmonary inflammatory response; (2) that particle size was associated with the acute pulmonary inflammatory response; and (3) that TiO2 particles coated with Al(OH)3 induced a greater pulmonary inflammatory response than did non-coated particles. We separated the seven TiO2 into two groups: a group containing the six TiO2 with no surface coating and a group containing the one TiO2 with a surface coating. Intratracheal administration to rats of TiO2 from the first group (i.e., non-coated TiO2) induced only acute pulmonary inflammatory responses, and within this group, the acute pulmonary inflammatory response was equivalent when the particle size was the same, regardless of crystallinity or shape. In contrast, intratracheal administration to rats of the TiO2 from the second group (i.e., the coated TiO2) induced a more severe, subacute pulmonary inflammatory response compared with that produced by the non-coated TiO2. Since alteration of the pulmonary inflammatory response by surface treatment may depend on the coating material used, the pulmonary toxicities of coated TiO2 need to be further evaluated. Overall, the present results demonstrate that physicochemical properties may be useful for predicting the pulmonary risk posed by new nano-TiO2 materials.

15.
Toxicol Appl Pharmacol ; 287(3): 210-21, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26057786

ABSTRACT

Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600mg/kg body weight/day for 28days. In the subgranular zone (SGZ), 600mg/kg CPZ increased the number of cleaved caspase-3(+) apoptotic cells. At ≥120mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥120mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥120mg/kg decreased phosphorylated TRKB(+) interneurons, although the number of reelin(+) interneurons was unchanged. At 600mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells.


Subject(s)
Cuprizone/toxicity , Hippocampus/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Administration, Oral , Age Factors , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Biomarkers/metabolism , Cell Lineage , Cuprizone/administration & dosage , Dose-Response Relationship, Drug , Doublecortin Protein , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation , Hippocampus/metabolism , Hippocampus/pathology , Interneurons/drug effects , Interneurons/metabolism , Interneurons/pathology , Male , Myelin Sheath/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Rats, Sprague-Dawley , Reelin Protein , Signal Transduction/drug effects , Time Factors
16.
Nanotoxicology ; 9(8): 1050-8, 2015.
Article in English | MEDLINE | ID: mdl-25938280

ABSTRACT

We evaluated and compared the pulmonary clearance kinetics and extrapulmonary translocations of seven titanium dioxide (TiO2) nano- and submicron particles with different characteristics, including size, shape and surface coating. Varying doses of TiO2 nano- and submicron particles dispersed in 0.2% disodium phosphate solution were intratracheally administered to male F344 rats. The rats were euthanized under anesthesia for 3, 28 and 91 days after administration. Ti levels in pulmonary and various extrapulmonary organs were determined using inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). The lungs, including bronchoalveolar lavage fluid (BALF), contained 55-89% of the administered TiO2 dose at 3 days after administration. The pulmonary clearance rate constants, estimated using a one-compartment model, were higher after administration of 0.375-2.0 mg/kg body weight (bw) (0.016-0.020/day) than after administration of 3.0-6.0 mg/kg bw (0.0073-0.013/day) for six uncoated TiO2. In contrast, the clearance rate constant was 0.011, 0.0046 and 0.00018/day following administration of 0.67, 2.0 and 6.0 mg/kg bw TiO2 nanoparticle with Al(OH)3 coating, respectively. Translocation of TiO2 from the lungs to the thoracic lymph nodes increased in a time- and dose-dependent manner. Furthermore, the translocation of TiO2 from the lungs to the thoracic lymph nodes after 91 days was higher when Al(OH)3 coated TiO2 was administered (0.93-6.4%), as compared to uncoated TiO2 (0.016-1.8%). Slight liver translocation was observed (<0.11%), although there was no clear trend related to dose or elapsed time. No significant translocation was observed in other organs including the kidney, spleen and brain.


Subject(s)
Lung/metabolism , Nanoparticles/metabolism , Titanium/administration & dosage , Titanium/pharmacokinetics , Trachea/metabolism , Animals , Lung/drug effects , Male , Metabolic Clearance Rate , Nanoparticles/chemistry , Rats , Tissue Distribution , Titanium/chemistry
17.
Toxicol Lett ; 234(3): 180-93, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25704630

ABSTRACT

The exposure to cuprizone (CPZ) leads to demyelination in the central nervous system in rodents. To examine the developmental effects of CPZ exposure on hippocampal neurogenesis, pregnant rats were treated with 0, 0.1 or 0.4% CPZ in the diet from gestational day 6 to day 21 after delivery. On postnatal day 21, male offspring had a decreased density of new glue2(+) oligodendrocyte progenitor cells in the dentate hilus and in the area of the cerebellar medulla in the presence of 0.4% CPZ. With regard to neurogenesis-related parameters, offspring had decreased T box brain 2(+) progenitor cells and increased apoptotic cells, as detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, which was accompanied by the up-regulation of Casp12 and Bcl2l11 in the subgranular zone, and increased reelin(+) interneurons in the dentate hilus. In addition, the density of phosphorylated TrkB(+) interneurons decreased in the dentate hilus, which was accompanied by transcript down-regulation of Bdnf and Chrna7 in the dentate gyrus. Moreover, granule cells expressing gene products of immediate-early genes, i.e., Arc and Fos, decreased. These results suggest that maternal exposure to 0.4% CPZ decreases proliferative type-2 progenitor cells via endoplasmic reticulum stress-mediated apoptosis and inhibition of cholinergic signals to intermediate-stage progenitor cells following reduced oligodendrocyte production and suppression of the brain-derived neurotrophic factor signaling cascade. Increases in reelin-expressing interneurons may compensate for impaired granule cell migration and/or correct positioning due to decreased immediate-early gene-mediated neuronal plasticity. However, all observed fluctuations disappeared at the adult stage, suggesting that CPZ-induced developmental neurotoxicity was reversible.


Subject(s)
Chelating Agents/toxicity , Cholinergic Neurons/drug effects , Cuprizone/toxicity , Hippocampus/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Prenatal Exposure Delayed Effects/etiology , Animals , Apoptosis/drug effects , Female , Gene Expression/drug effects , Hippocampus/growth & development , Male , Pregnancy , Rats , Real-Time Polymerase Chain Reaction , Reelin Protein
18.
Toxicology ; 325: 1-11, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25128818

ABSTRACT

AEROSIL(®) P25 titanium dioxide (TiO2) nanoparticles dispersed in 0.2% disodium phosphate solution were intratracheally administered to male F344 rats at doses of 0 (control), 0.375, 0.75, 1.5, 3.0, and 6.0 mg/kg. The rats were sacrificed under anesthesia at 1 day, 3 days, 7 days, 4 weeks, 13 weeks, and 26 weeks after administration. Ti levels in various pulmonary and extrapulmonary organs were determined using sensitive inductively coupled plasma sector field mass spectrometry. One day after administration, the lungs contained 62-83% of TiO2 administered dose. Twenty-six weeks after administration, the lungs retained 6.6-8.9% of the TiO2 administered at the 0.375, 0.75, and 1.5 mg/kg doses, and 13% and 31% of the TiO2 administered at the 3.0 and 6.0 mg/kg doses, respectively. The pulmonary clearance rate constants from compartment 1, k1, were estimated using a 2-compartment model and were found to be higher for the 0.375 and 0.75 mg/kg doses of TiO2 (0.030/day for both) than for TiO2 doses of 1.5-6.0 mg/kg (0.014-0.022/day). The translocation rate constants from compartment 1 to 2, k12, were estimated to be 0.015 and 0.018/day for the 0.375 and 0.75 mg/kg doses, and 0.0025-0.0092/day for doses of 1.5-6.0mg/kg. The pulmonary clearance rate constants from compartment 2, k2, were estimated to be 0.0086 and 0.0093/day for doses of 0.375 and 0.75 mg/kg, and 0-0.00082/day for 1.5-6.0 mg/kg doses. Translocation of TiO2 from the lungs to the thoracic lymph nodes increased in a time- and dose-dependent manner, accounting for 0.10-3.4% of the administered dose at 26 weeks. The measured thoracic lymph node burdens were a much better fit to the thoracic lymph node burdens estimated assuming translocation from compartment 1 to the thoracic lymph nodes, rather than those estimated assuming translocation from compartment 2 to the thoracic lymph nodes. The translocation rate constants from the lungs to the thoracic lymph nodes, kLung→Lym, were 0.000037-0.00081/day, and these also increased with increasing doses of TiO2. Although a small amount of TiO2 had translocated to the liver by 3 days after the administration (0.0023-0.012% of the highest dose administered, 6.0 mg/kg), translocation to the other extrapulmonary organs was not detected.


Subject(s)
Lung/metabolism , Metal Nanoparticles , Titanium/administration & dosage , Titanium/pharmacokinetics , Administration, Inhalation , Animals , Body Burden , Bronchoalveolar Lavage Fluid/chemistry , Dose-Response Relationship, Drug , Lymph Nodes/metabolism , Male , Mass Spectrometry/methods , Metabolic Clearance Rate , Models, Biological , Particle Size , Rats, Inbred F344 , Titanium/toxicity , Toxicokinetics
19.
Toxicol Appl Pharmacol ; 279(2): 150-62, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24915197

ABSTRACT

We previously found that the 28-day oral toxicity study of glycidol at 200mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc(+) neurons at 1000ppm and Fos(+) neurons at ≥300ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure.


Subject(s)
Brain/drug effects , Epoxy Compounds/toxicity , Genes, Immediate-Early , Neuronal Plasticity/drug effects , Neurons/drug effects , Propanols/toxicity , Age Factors , Animals , Brain/metabolism , Brain/pathology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Female , Gene Expression Profiling/methods , Immunohistochemistry , Male , Maternal Exposure , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurogenesis/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Neurons/pathology , Oligonucleotide Array Sequence Analysis , Pregnancy , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Synaptic Transmission/drug effects , Synaptic Transmission/genetics , Time Factors
20.
Toxicol Lett ; 228(3): 225-34, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24780913

ABSTRACT

The present study was performed to determine target gene profiles associated with pathological mechanisms of developmental neurotoxicity. For this purpose, we selected a rat developmental hypothyroidism model because thyroid hormones play an essential role in both neuronal and glial development. Region-specific global gene expression analysis was performed at postnatal day (PND) 21 on four brain regions representing different structures and functions, i.e., the cerebral cortex, corpus callosum, dentate gyrus and cerebellar vermis of rats exposed to 6-propyl-2-thiouracil in the drinking water at 3 and 10ppm from gestational day 6 to PND 21. Expression changes of gene clusters of neuron differentiation and development, cell migration, synaptic function, and axonogenesis were detected in all four regions. Characteristically, gene expression profiles suggestive of affection of ephrin signaling and glutamate transmission were obtained in multiple brain regions. Gene clusters suggestive of suppression of myelination and glial development were specifically detected in the corpus callosum and cerebral cortex. Immunohistochemically, immature astrocytes immunoreactive for vimentin and glial fibrillary acidic protein were increased, and oligodendrocytes immunoreactive for oligodendrocyte lineage transcription factor 2 were decreased in the corpus callosum. Immunoreactive intensity of myelin basic protein was also decreased in the corpus callosum and cerebral cortex. The hippocampal dentate gyrus showed downregulation of Ptgs2, which is related to synaptic activity and neurogenesis, as well as a decrease of cyclooxygenase-2-immunoreactive granule cells, suggesting an impaired synaptic function related to neurogenesis. These results suggest that multifocal brain region-specific microarray analysis can determine the affection of neuronal or glial development.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Developmental , Hypothyroidism/genetics , Neurogenesis/genetics , Neuroglia/metabolism , Neurons/metabolism , Prenatal Exposure Delayed Effects , Propylthiouracil , Age Factors , Animals , Brain/growth & development , Brain/pathology , Cluster Analysis , Disease Models, Animal , Female , Gene Expression Profiling/methods , Hypothyroidism/blood , Hypothyroidism/chemically induced , Hypothyroidism/pathology , Male , Neuroglia/pathology , Neurons/pathology , Oligonucleotide Array Sequence Analysis , Pregnancy , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Thyroid Hormones/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...