Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 36(8): 1796-806, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7595100

ABSTRACT

It was the aim of this study to i) compare the effects of glucose and other hexoses with that of oleate on secretion of apolipoproteins (apos) A-I and B by HepG2 cells, and ii) document the effect of various metabolic inhibitors on the secretion of these apos in the absence or presence of extra glucose/oleate. i) The addition of 10 mM glucose increased secretion of apoA-I and apoB, as measured by enzyme immunoassay, by about 60% when cells were incubated for 48 h in DMEM + 10% fetal calf serum. The addition of extra glucose also increased the mRNA levels for these apos. Increased radioactivity was also found in these apolipoproteins by immunoprecipitation after metabolic labeling with [35S]methionine for 48 h. However, in a pulse-chase experiment (15 min labeling, 2 h chase), glucose was found to increase apoA-I synthesis but not apoB synthesis. More labeled apoB appeared in the medium during the chase because glucose inhibited its intracellular degradation. The effect of glucose on secretion of these apos could be mimicked by fructose and mannose but not by 6-deoxyglucose, showing that the hexoses must enter the cells and be phosphorylated. In contrast, the addition of 0.5 mM oleate had a weak inhibitory effect on secretion of apoA-I whereas it increased the secretion of apoB by more than twofold. The combination of 10 mM glucose and 0.5 mM oleate had no greater effect than glucose alone on apoA-I secretion but increased apoB secretion by fourfold. ii) Inhibiting glycolysis (by glucosamine) lowered secretion of both apoA-I and apoB, while inhibiting lipogenesis (using 8-Br-cyclic AMP or 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA)) did not affect apoA-I secretion but clearly decreased that of apoB. However, the inhibitory effect of TOFA on apoB secretion was much smaller in the presence of 0.5 mM oleate instead of extra glucose. Actinomycin-D and cycloheximide strongly suppressed the stimulatory effect of glucose on secretion of both apolipoproteins. Actinomycin-D also suppressed basal secretion of apoA-I but surprisingly stimulated that of apoB. These observations indicate that in HepG2 cells secretion of apoA-I is strongly dependent on ongoing protein synthesis and can be boosted by glucose, whereas that of apoB is primarily driven by internal (via lipogenesis from glucose) or external supply of fatty acyl-residues.


Subject(s)
Apolipoprotein A-I/metabolism , Apolipoproteins B/metabolism , Hexoses/pharmacology , Liver/metabolism , Oleic Acids/pharmacology , Apolipoprotein A-I/genetics , Apolipoproteins B/genetics , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Glucose/pharmacology , Glycolysis , Humans , Lipids/biosynthesis , Liver/drug effects , Oleic Acid , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/analysis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...