Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Heliyon ; 10(5): e26131, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449662

ABSTRACT

Intrinsic and extrinsic aging affect the health of human skin. Extracellular matrix protein degradation, DNA damage and oxidative stress are known to disturb skin architecture and skin homeostasis leading to skin aging. Traditional Chinese Medicine (TCM) delivers a large amount of knowledge regarding the phytotherapeutic power of diverse plants. Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum, Nelumbo nucifera and Osmanthus fragrans are five plants used in TCM for their protective effect. In this study, several combinations of these TCM plants were explored: first, an in silico analysis was performed to predict their potential to target biological activities in the skin and then, some predictions were verified with in vitro studies to underline the synergistic effect of plant extracts. The results showed a stronger anti-aging activity for the combination with the five plants compared to the combination with Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum and, compared to Panax ginseng alone.

2.
Int J Cosmet Sci ; 45(5): 604-611, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37170671

ABSTRACT

OBJECTIVE: Throughout our existence, the skin senses and analyses the mechanical forces imposed by the environment. In response to these environmental forces, skin can deform itself and achieve a biological response. The subsequent cutaneous plasticity emerges from mechanical properties arising from the collective action of the skin cells, particularly keratinocytes, that govern the tensile strength via cell-to-cell adhesions and via cell-matrix adhesion structures. In addition to serving as force-bearing entities, keratinocytes respond to forces by activating signalling pathways to control their own fate and function. To detect and adapt to mechanical signals, keratinocytes possess a panel of sensory receptors and junctional intercellular structures. Mechanically activated ion channel Piezo1 has been described as a force sensor and as being involved in pleasant touch perception. In this study, relationships between Piezo1 modulation and oxytocin synthesis were investigated. METHODS: The expression of Piezo1 in the skin was studied and compared with the expression of TRPV1. Dooku1 antagonist and Jedi1 agonist were used to modulate Piezo1. The level of E-cadherin and oxytocin was monitored in ex vivo skin biopsies by immunodetection. RESULTS: Taken together, our results illustrate the major role of mechanosensitive ion channel Piezo1 in skin barrier integrity, and in peripheral oxytocin synthesis in the skin. CONCLUSION: In conclusion, this study highlights the relationships between pleasant touch, soft touch and local oxytocin synthesis.


OBJECTIF: Tout au long de notre existence, la peau détecte et analyse les forces mécaniques imposées par l'environnement. En réponse à ces forces environnementales, la peau peut se déformer et obtenir une réponse biologique. La plasticité cutanée qui s'ensuit émerge des propriétés mécaniques découlant de l'action collective des cellules cutanées, en particulier les kératinocytes, qui déterminent la résistance à la traction via les adhérences intercellulaires et les structures d'adhésion cellule-matrice. En plus de servir d'entités porteuses de force, les kératinocytes répondent aux forces en activant les voies de signalisation pour contrôler leur propre destin et leur propre fonction. Pour détecter et s'adapter aux signaux mécaniques, les kératinocytes possèdent un panel de récepteurs sensoriels et de structures intercellulaires jonctionnelles. Le canal ionique activé mécaniquement Piezo1 a été décrit comme un capteur de force et comme étant impliqué dans la perception d'un toucher agréable. Dans cette étude, les relations entre la modulation Piezo1 et la synthèse de l'ocytocine ont été étudiées. MÉTHODES: L'expression de Piezo1 dans la peau a été étudiée et comparée à l'expression de TRPV1. L'antagoniste Dooku1 et l'agoniste Jedi1 ont été utilisés pour moduler Piezo1. Le taux de cadhérine-E et d'ocytocine a été contrôlé dans des biopsies cutanées ex vivo par immunodétection. RÉSULTATS: Dans l'ensemble, nos résultats illustrent le rôle majeur du canal ionique mécanosensible Piezo1 dans l'intégrité de la barrière cutanée et dans la synthèse de l'ocytocine périphérique dans la peau. CONCLUSION: En conclusion, cette étude met en évidence les relations entre le toucher agréable, le toucher doux et la synthèse d'ocytocine locale.

3.
J Cosmet Dermatol ; 22(7): 2090-2098, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36847702

ABSTRACT

OBJECTIVE: The skin is a sensory organ, densely innervated with various types of sensory nerve endings, capable of discriminating touch, environmental sensations, proprioception, and physical affection. Neurons communication with skin cells confer to the tissue the ability to undergo adaptive modifications during response to environmental changes or wound healing after injury. Thought for a long time to be dedicated to the central nervous system, the glutamatergic neuromodulation is increasingly described in peripheral tissues. Glutamate receptors and transporters have been identified in the skin. There is a strong interest in understanding the communication between keratinocytes and neurons, as the close contacts with intra-epidermal nerve fibers is a favorable site for efficient communication. To date, various coculture models have been described. However, these models were based on non-human or immortalized cell line. Even the use of induced pluripotent stem cells (iPSCs) is posing limitations because of epigenetic variations during the reprogramming process. METHODS: In this study, we performed small molecule-driven direct conversion of human skin primary fibroblasts into induced neurons (iNeurons). RESULTS: The resulting iNeurons were mature, showed pan-neuronal markers, and exhibited a glutamatergic subtype and C-type fibers characteristics. Autologous coculture of iNeurons with human primary keratinocytes, fibroblasts, and melanocytes was performed and remained healthy for many days, making possible to study the establishment of intercellular interactions. CONCLUSION: Here, we report that iNeurons and primary skin cells established contacts, with neurite ensheathment by keratinocytes, and demonstrated that iNeurons cocultured with primary skin cells provide a reliable model to examine intercellular communication.


Subject(s)
Keratinocytes , Skin , Humans , Coculture Techniques , Keratinocytes/metabolism , Cell Communication , Melanocytes
4.
Int J Cosmet Sci ; 45(2): 214-223, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36751998

ABSTRACT

OBJECTIVE: Air pollution is today fully acknowledged to be a significant public health problem. Rapid urbanization exposed us to a variety of unhealthy ambient air pollutants at high concentrations. The emergence of airborne ultrafine particles has added an additional dimension to this already complex problem of air pollution. The skin has different functions, one of them being the protection against the deleterious effect of external agents. The aim of this study is to evaluate the impact of airborne ultrafine particles (UFP) pollution on skin aging and on keratinocyte differentiation. METHODS: Ex vivo human skin biopsies and cultured keratinocytes stem cells (KSC) were submitted to diesel exhaust-derived UFP. Reactive oxygen species (ROS) production was assessed with the MitoSOX™ probe. Keratinocyte stemness potential was evaluated by the immunodetection of keratin 15 (K15) and p63 (∆N isoforms). Effect of UFP on the epithelial niche maintenance was evaluated by immunodetection of Sox9. Reconstructed epidermis model was used to assess the impact of UFP on keratinocyte differentiation and aging. RESULTS: UFP exposure induced ROS production and disturbed K15, ∆Np63 and Sox9 expression in KSC or ex vivo skin. Finally, investigations on reconstructed epidermis revealed a phenotype marked by impaired keratinocyte differentiation. CONCLUSION: These results indicate that UFP pollution is a potent extrinsic factor of skin aging, affecting the keratinocyte stem cell potential and the skin renewal process.


OBJECTIF: La pollution de l'air est désormais pleinement reconnue comme un problème de santé publique important. L'urbanisation rapide nous a exposés à une variété de polluants atmosphériques ambiants malsains à des concentrations élevées. L'émergence de particules ultrafines en suspension dans l'air a ajouté une dimension supplémentaire à ce problème déjà complexe de la pollution de l'air. La peau exerce différentes fonctions, l'une d'elles étant la protection contre l'effet délétère d'agents extérieurs. L'objectif de cette étude est d'évaluer l'impact de la pollution par les particules ultrafines (UFP) aéroportées sur le vieillissement cutané et sur la différenciation des kératinocytes. MÉTHODES: Des biopsies de peau humaine ex vivo et des kératinocytes souches (KSC) en culture ont été mis en présence d'UFP provenant d'échappement de véhicule diesel. La production d'espèces réactives de l'oxygène (ROS) a été évaluée avec la sonde MitoSOX™. Le potentiel de souche des kératinocytes a été évalué par immunodétection de la kératine 15 (K15) et p63 (isoformes ∆N). L'effet des UFP sur la niche épithéliale a été évalué par immunodétection de Sox9. Un modèle d'épiderme reconstruit a été utilisé pour évaluer l'impact des UFP sur la différenciation et le vieillissement des kératinocytes. RÉSULTATS: L'exposition aux UFP a induit la production de ROS, a perturbé l'expression de K15, ∆Np63 et de Sox9 dans les KSC et dans la peau ex vivo. Enfin, des investigations sur des épidermes reconstruits ont révélé un phénotype marqué par une différenciation altérée des kératinocytes. CONCLUSION: Ces résultats indiquent que la pollution par les UFP est un facteur extrinsèque puissant du vieillissement cutané, affectant le potentiel des cellules souches de kératinocytes et le processus de renouvellement cutané.


Subject(s)
Air Pollutants , Air Pollution , Humans , Particulate Matter/toxicity , Reactive Oxygen Species , Air Pollutants/toxicity , Keratinocytes , Particle Size
5.
Viruses ; 14(7)2022 07 14.
Article in English | MEDLINE | ID: mdl-35891516

ABSTRACT

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.


Subject(s)
Hepatitis E virus , Hepatitis E , Furylfuramide/metabolism , Hepatitis E virus/genetics , Humans , Polyproteins/genetics , Polyproteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
6.
J Cosmet Dermatol ; 21(11): 6100-6108, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35673958

ABSTRACT

OBJECTIVE: The epidermis possesses the capacity to replace dying cells and to heal wounds, thanks to resident stem cells, which have self-renewal properties. In skin physiology, miRNAs have been shown to be involved in many processes, including skin and hair morphogenesis. Recently, differentiation of epidermal stem cells was shown to be promoted by the miR-203. The miR-203 is upregulated during epidermal differentiation and is of interest because of significant targets. METHODS: By utilizing a bioinformatic tool, we identified a target site for miR-203 in the survivin mRNA. Silencing miR-203 was managed with the use of antagomir; the silencing of survivin was performed with a siRNA. Survivin expression was determined by qPCR or immunofluorescence in cultured cells, and by immunohistochemistry in skin sections. Involucrin expression was used as marker of keratinocyte differentiation. A rice extract with previously demonstrated anti-aging properties was evaluated on miR-203 modulation. RESULTS: In this study, we identified a miR-203/survivin axis, important for epidermal homeostasis. We report that differentiation of keratinocyte is dependent on the level of miR-203 expression and that inhibition of miR-203 can increase the expression of survivin, an epidermal marker of stemness. CONCLUSION: In summary, our findings suggest that miR-203 target 3'UTR region of survivin mRNA and directly represses survivin expression in the epidermis. The rice extract was identified as modulator of miR-203 and pointed out as a promising microRNA-based strategy in treating skin changes occurring with aging.


Subject(s)
Keratinocytes , MicroRNAs , Survivin , Humans , Cell Proliferation , Keratinocytes/metabolism , MicroRNAs/genetics , RNA, Messenger/metabolism , Skin/metabolism , Survivin/genetics , Survivin/metabolism , Stem Cells
7.
J Biol Chem ; 298(5): 101923, 2022 05.
Article in English | MEDLINE | ID: mdl-35413290

ABSTRACT

Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (∼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.


Subject(s)
Genome, Viral , Positive-Strand RNA Viruses , SARS-CoV-2 , COVID-19/virology , Genome, Viral/genetics , Humans , Mutation , Positive-Strand RNA Viruses/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
8.
Procedia Comput Sci ; 192: 487-496, 2021.
Article in English | MEDLINE | ID: mdl-34630741

ABSTRACT

Understanding the replication machinery of viruses contributes to suggest and try effective antiviral strategies. Exhaustive knowledge about the proteins structure, their function, or their interaction is one of the preconditions for successfully modeling it. In this context, modeling methods based on a formal representation with a high semantic expressiveness would be relevant to extract proteins and their nucleotide or amino acid sequences as an element from the replication process. Consequently, our approach relies on the use of semantic technologies to design the SARS-CoV-2 replication machinery. This provides the ability to infer new knowledge related to each step of the virus replication. More specifically, we developed an ontology-based approach enriched with reasoning process of a complete replication machinery process for SARS-CoV-2. We present in this paper a partial overview of our ontology OntoRepliCov to describe one step of this process, namely, the continuous translation or protein synthesis, through classes, properties, axioms, and SWRL (Semantic Web Rule Language) rules.

9.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269120

ABSTRACT

The large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures. In addition, the MTase of Ebola virus can induce cap-independent internal adenosine 2'-O-methylation. In this work, we investigated the CTD role in the regulation of the cap-dependent and cap-independent MTase activities of the L protein. We found that the CTD, which is enriched in basic amino acids, plays a key role in RNA binding and in turn regulates the different MTase activities. We demonstrated that the mutation of CTD residues modulates specifically the different MTase activities. Altogether, our results highlight the pivotal role of the L protein CTD in the control of viral RNA methylation, which is critical for Ebola virus replication and escape from the innate response in infected cells.IMPORTANCE Ebola virus infects human and nonhuman primates, causing severe infections that are often fatal. The epidemics, in West and Central Africa, emphasize the urgent need to develop antiviral therapies. The Ebola virus large protein (L), which is the central protein for viral RNA replication/transcription, harbors a methyltransferase domain followed by a C-terminal domain of unknown function. We show that the C-terminal domain regulates the L protein methyltransferase activities and consequently participates in viral replication and escape of the host innate immunity.


Subject(s)
Ebolavirus/genetics , Methyltransferases/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Ebolavirus/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Methylation , Methyltransferases/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Viral Nonstructural Proteins/metabolism , Virus Replication
10.
Semin Arthritis Rheum ; 48(6): 1105-1112, 2019 06.
Article in English | MEDLINE | ID: mdl-30344080

ABSTRACT

OBJECTIVES: To describe the clinical and microbiological characteristics and outcomes after antibiotic treatment of a national cohort of patients with Lyme arthritis confirmed by PCR testing on synovial fluid and by serology, when available. METHODS: Using the French National Reference Center for Borrelia database, patients with a positive PCR on synovial fluid for Borrelia were identified. Patient clinical and biological characteristics were reviewed from patient records. Long-term outcomes after treatment were studied through a questionnaire and with follow-up data. RESULTS: Among 357 synovial fluid testing by PCR between 2010 and 2016, 37 (10.4%) were positive for Borrelia. Patients' median age was 36 years (range 6-78) with 61% of men and 28% patients under 18. The presentation was monoarticular in 92% and the knee was involved in 97%. Contrary to the Borrelia species repartition in European ticks, B. burgdorferi sensu stricto was the most prevalent species found in synovial fluid (54%) followed by B. azfelii (29%) and B. garinii (17%). Antibiotic treatments were mainly composed of doxycycline (n = 24), ceftriaxone (n = 10) and amoxicillin (n = 6), for a median duration of 4 weeks (range 3-12). Despite a properly conducted treatment, 34% of patients (n = 12) developed persistent synovitis for at least 2 months (median duration 3 months, range 2-16). Among those, 3 developed systemic inflammatory oligo- or polyarthritis in previously unaffected joints with no signs of persistent infection (repeated PCR testing negative), which mandated Disease-Modifying Antirheumatic Drugs (DMARD) introduction, leading to remission. CONCLUSION: In France and contrary to ticks ecology, Lyme arthritis is mainly caused by B. burgdorferi sensu stricto. Despite proper antibiotic therapy, roughly one third of patients may present persistent inflammatory synovitis and a small proportion may develop systemic arthritis. In such cases, complete remission can be reached using DMARD.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Borrelia/isolation & purification , Lyme Disease/drug therapy , Synovial Fluid/microbiology , Adolescent , Adult , Aged , Child , Female , France , Humans , Lyme Disease/microbiology , Male , Middle Aged , Polymerase Chain Reaction , Treatment Outcome , Young Adult
11.
Proc Natl Acad Sci U S A ; 115(2): E162-E171, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279395

ABSTRACT

Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Šresolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.


Subject(s)
Coronavirus/metabolism , RNA, Viral/metabolism , Ribavirin/metabolism , Virus Replication , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/genetics , Crystallography, X-Ray , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Protein Binding , Protein Domains , RNA, Viral/genetics , Ribavirin/pharmacology , Severe Acute Respiratory Syndrome/virology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
13.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28381577

ABSTRACT

Favipiravir (T-705) is a broad-spectrum antiviral agent that has been approved in Japan for the treatment of influenza virus infections. T-705 also inhibits the replication of various RNA viruses, including chikungunya virus (CHIKV). We demonstrated earlier that the K291R mutation in the F1 motif of the RNA-dependent RNA polymerase (RdRp) of CHIKV is responsible for low-level resistance to T-705. Interestingly, this lysine is highly conserved in the RdRp of positive-sense single-stranded RNA (+ssRNA) viruses. To obtain insights into the unique broad-spectrum antiviral activity of T-705, we explored the role of this lysine using another +ssRNA virus, namely, coxsackievirus B3 (CVB3). Introduction of the corresponding K-to-R substitution in the CVB3 RdRp (K159R) resulted in a nonviable virus. Replication competence of the K159R variant was restored by spontaneous acquisition of an A239G substitution in the RdRp. A mutagenesis analysis at position K159 identified the K159M variant as the only other viable variant which had also acquired the A239G substitution. The K159 substitutions markedly decreased the processivity of the purified viral RdRp, which was restored by the introduction of the A239G mutation. The K159R A239G and K159M A239G variants proved, surprisingly, more susceptible than the wild-type virus to T-705 and exhibited lower fidelity in polymerase assays. Furthermore, the K159R A239G variant was found to be highly attenuated in mice. We thus demonstrate that the conserved lysine in the F1 motif of the RdRp of +ssRNA viruses is involved in the broad-spectrum antiviral activity of T-705 and that it is a key amino acid for the proper functioning of the enzyme.IMPORTANCE In this study, we report the key role of a highly conserved lysine residue of the viral polymerase in the broad-spectrum antiviral activity of favipiravir (T-705) against positive-sense single-stranded RNA viruses. Substitutions of this conserved lysine have a major negative impact on the functionality of the RdRp. Furthermore, we show that this lysine is involved in the fidelity of the RdRp and that the RdRp fidelity influences the sensitivity of the virus for the antiviral efficacy of T-705. Consequently, these results provide insights into the mechanism of the antiviral activity of T-705 and may lay the basis for the design of novel chemical scaffolds that may be endowed with a more potent broad-spectrum antiviral activity than that of T-705.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Enterovirus B, Human/drug effects , Enterovirus B, Human/genetics , Lysine/metabolism , Pyrazines/pharmacology , RNA-Dependent RNA Polymerase/chemistry , Amides/administration & dosage , Amino Acid Motifs , Animals , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chlorocebus aethiops , Drug Resistance, Viral/genetics , Enterovirus B, Human/enzymology , Japan , Lysine/genetics , Mice , Microbial Viability/drug effects , Mutagenesis , Mutation , Pyrazines/administration & dosage , RNA-Dependent RNA Polymerase/genetics , Vero Cells , Virus Replication/drug effects
16.
Virus Res ; 194: 90-9, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25451065

ABSTRACT

The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world.


Subject(s)
RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/physiology , Transcription, Genetic , Virus Replication , Multienzyme Complexes/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Viral Proteins/metabolism
17.
Proc Natl Acad Sci U S A ; 111(37): E3900-9, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25197083

ABSTRACT

In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Exoribonucleases/metabolism , Multiprotein Complexes/metabolism , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Nonstructural Proteins/metabolism , Base Sequence , Biocatalysis , Humans , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation/genetics , Protein Binding , RNA/metabolism , RNA, Viral/biosynthesis , Reproducibility of Results , Reverse Genetics , Virus Replication
18.
Biomark Med ; 8(5): 621-3, 2014.
Article in English | MEDLINE | ID: mdl-25123029

ABSTRACT

Biomarkers and Ageing 25 February 2014, London, UK This conference was organized by Euroscicon and was part of the 2014 Ageing Summit. The central theme was biomarkers and aging including current research on biomarkers at the genomics and proteomics level. The informal atmosphere of the conference promoted interaction and networking opportunities between key leaders from industry, academic and clinics. Presentations as well as the discussion panel session brought opportunities to widely discuss the relevance of biomarkers as signatures for human aging or age-related diseases. The meeting highlighted the importance of genomics and regulatory elements in aging, their probable role in successful aging and their potential interest for future antiaging approaches. The meeting was chaired by David Melzer and Lorna Harries (University of Exeter, UK).


Subject(s)
Aging/metabolism , Aging/genetics , Biomarkers/metabolism , Bone and Bones/metabolism , Humans , Molecular Imaging , RNA Splicing , Reference Values , Skin Aging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Biol Chem ; 289(37): 25783-96, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25074927

ABSTRACT

The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1-16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3'-5' exoribonuclease and 2'-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2'-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses.


Subject(s)
Coronavirus Infections/enzymology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/genetics , Virus Replication/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Coronavirus Infections/pathology , Crystallography, X-Ray , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Mutagenesis , Protein Interaction Maps/genetics , Viral Nonstructural Proteins/metabolism
20.
Antiviral Res ; 101: 122-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24269475

ABSTRACT

The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".


Subject(s)
Antiviral Agents/pharmacology , Severe acute respiratory syndrome-related coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Humans , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Ribonucleases/antagonists & inhibitors , Ribonucleases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...