Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 98(7)2022 07 13.
Article in English | MEDLINE | ID: mdl-35749571

ABSTRACT

Bioaugmentation is a promising strategy for enhancing trichloroethylene (TCE) degradation in fractured rock. However, slow or incomplete biodegradation can lead to stalling at degradation byproducts such as 1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Over the course of 7 years, we examined the response of groundwater microbial populations in a bioaugmentation test where an emulsified vegetable oil solution (EOS®) and a dechlorinating consortium (KB-1®), containing the established dechlorinator Dehalococcoides (DHC), were injected into a TCE-contaminated fractured rock aquifer. Indigenous microbial communities responded within 2 days to added substrate and outcompeted KB-1®, and over the years of monitoring, several other notable turnover events were observed. Concentrations of ethene, the end product in reductive dechlorination, had the strongest correlations (P< .05) with members of Candidatus Colwellbacteria but their involvement in reductive dechlorination is unknown and warrants further investigation.DHC never exceeded 0.6% relative abundance of groundwater microbial communities, despite its previously presumed importance at the site. Increased concentrations of carbon dioxide, acetic acid, and methane were positively correlated with increasing ethene concentrations; however, concentrations of cis-DCE and VC remained high by the end of the monitoring period suggesting preferential enrichment of indigenous partial dechlorinators over bioaugmented complete dechlorinators. This study highlights the importance of characterizing in situ microbial populations to understand how they can potentially enhance or inhibit augmented TCE degradation.


Subject(s)
Chloroflexi , Groundwater , Microbiota , Trichloroethylene , Vinyl Chloride , Biodegradation, Environmental , Chloroflexi/genetics , Chloroflexi/metabolism , Groundwater/microbiology , Trichloroethylene/metabolism , Vinyl Chloride/metabolism
2.
J Contam Hydrol ; 223: 103478, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31003861

ABSTRACT

Methanol extractions for chloroethene analyses are conducted on rock samples from seven closely spaced coreholes in a mudstone aquifer that was subject to releases of the nonaqueous phase liquid (NAPL) form of trichloroethene (TCE) between the 1950's and 1990's. Although TCE concentration in the rock matrix over the length of coreholes is dictated by proximity to subhorizontal bedding plane fractures, elevated TCE concentrations in the rock matrix are not continuous along the most permeable bedding plane fractures. A complex configuration of subvertical and subhorizontal fractures appears to be responsible for the TCE distribution from prior TCE releases at land surface. Phase partitioning calculations of TCE in the rock matrix show that most TCE is adsorbed to solid surfaces because of the large fraction of organic carbon (foc) in the mudstone. Large TCE content in some cores indicate the likely presence of the NAPL form of TCE in the rock matrix. Using average values of porosity (n) and foc in phase partitioning calculations identifies a number of locations of possible NAPL occurrence in the rock matrix. Samples of mudstone analyzed for n and foc show variability in these properties over several orders of magnitude. Accounting for this variability in phase partitioning calculations identifies a probability of NAPL occurrence, PNAPL. The spatial variability of PNAPL along coreholes identifies a configuration that may be attributed to a TCE source zone that has evolved after emplacement due to NAPL dissolution, adsorption, and matrix diffusion.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Diffusion , Probability
3.
Ground Water ; 56(2): 317-336, 2018 03.
Article in English | MEDLINE | ID: mdl-28873499

ABSTRACT

A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.


Subject(s)
Biodegradation, Environmental , Groundwater , Water Pollutants, Chemical , Diffusion
4.
Ground Water ; 56(2): 300-316, 2018 03.
Article in English | MEDLINE | ID: mdl-28873502

ABSTRACT

Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower-permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture-dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high- and low-permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured-rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.


Subject(s)
Biodegradation, Environmental , Groundwater/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Water Wells
5.
J Contam Hydrol ; 171: 1-11, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25461882

ABSTRACT

Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Water Quality , Models, Theoretical , New Jersey , Time Factors , Water Wells/analysis
6.
J Contam Hydrol ; 156: 62-77, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270158

ABSTRACT

An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the BA was intensive only in wells where an amendment was distributed during injection, it is necessary to adequately distribute the amendments throughout the fractured rock to achieve substantial bioremediation. The slowdown in BA effect after a year is due to some extend to the decrease abundant of appropriate microbes, but more likely the decreased concentration of electron donor.


Subject(s)
Environmental Pollutants/metabolism , Trichloroethylene/metabolism , Biodegradation, Environmental , Biomass , Carbon Isotopes , Deuterium/analysis , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Groundwater/chemistry , Groundwater/microbiology , New Jersey , Trichloroethylene/analysis , Trichloroethylene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...