Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 77(2): 144-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27027707

ABSTRACT

OBJECTIVE: To assess the effects of 3 contrast medium injection techniques on attenuation values for canine adrenal glands during contrast-enhanced CT. ANIMALS: 9 healthy Beagles. PROCEDURES: 3 protocols were evaluated in a randomized cross-over design study: 700 mg of iodine/kg at a constant injection rate over 20 seconds (full-dose constant rate), the same dose at a rate following an exponential decay curve over 20 seconds (full-dose decelerated rate), and 350 mg of iodine/kg at a constant injection rate over 10 seconds (half-dose constant rate). Multislice CT images were obtained before and at predetermined time points after the start of contrast medium injection. RESULTS: Median peak attenuation values were 129, 133, and 87 Hounsfield units with the full-dose constant rate, full-dose decelerated rate, and half-dose constant rate injection protocols, respectively. Peak attenuation differed significantly between the full-dose constant rate and half-dose constant rate injection protocols and between the full-dose decelerated rate and half-dose constant rate injection protocols. Median time to peak attenuation did not differ significantly among injection methods and was 30, 23, and 15 seconds for the full-dose constant rate, full-dose decelerated rate, and half-dose constant rate injections, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The dose of contrast medium and the timing of postinjection CT scanning were main determinants of peak attenuation for adrenal glands in healthy dogs; effects of the 3 injection protocols on attenuation were minor. The exponentially decelerated injection method was subjectively complex. A constant injection protocol delivering 700 mg of iodine/kg over 20 seconds, with scans obtained approximately 30 seconds after starting contrast medium injection, provided images with maximum adrenal gland attenuation values.


Subject(s)
Adrenal Glands/diagnostic imaging , Contrast Media/administration & dosage , Dogs/anatomy & histology , Iodine/administration & dosage , Tomography, X-Ray Computed/veterinary , Adrenal Glands/anatomy & histology , Animals , Contrast Media/pharmacology , Cross-Over Studies , Iodine/pharmacology , Tomography, X-Ray Computed/methods
2.
BMC Vet Res ; 10: 122, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24888604

ABSTRACT

BACKGROUND: Hepatic lipidosis or fatty liver disease is a major metabolic disorder of high-producing dairy cows that compromises animal performance and, hence, causes heavy economic losses worldwide. This syndrome, occurring during the critical transition from gestation to early lactation, leads to an impaired health status, decreased milk yield, reduced fertility and shortened lifetime. Because the prevailing clinical chemistry parameters indicate advanced liver damage independently of the underlying disease, currently, hepatic lipidosis can only be ascertained by liver biopsy. We hypothesized that the condition of fatty liver disease may be accompanied by an altered profile of endogenous metabolites in the blood of affected animals. RESULTS: To identify potential small-molecule biomarkers as a novel diagnostic alternative, the serum samples of diseased dairy cows were subjected to a targeted metabolomics screen by triple quadrupole mass spectrometry. A subsequent multivariate test involving principal component and linear discriminant analyses yielded 29 metabolites (amino acids, phosphatidylcholines and sphingomyelines) that, in conjunction, were able to distinguish between dairy cows with no hepatic lipidosis and those displaying different stages of the disorder. CONCLUSIONS: This proof-of-concept study indicates that metabolomic profiles, including both amino acids and lipids, distinguish hepatic lipidosis from other peripartal disorders and, hence, provide a promising new tool for the diagnosis of hepatic lipidosis. By generating insights into the molecular pathogenesis of hepatic lipidosis, metabolomics studies may also facilitate the prevention of this syndrome.


Subject(s)
Cattle Diseases/blood , Lipidoses/veterinary , Liver Diseases/veterinary , Animals , Biomarkers/blood , Cattle , Cattle Diseases/metabolism , Dairying , Liver Diseases/blood , Liver Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...